【題目】如圖中的三個直角三角形是一個體積為20cm3的幾何體的三視圖,則該幾何體外接球的面積(單位:cm2)等于( 。
A.55π
B.75π
C.77π
D.65π
科目:高中數(shù)學 來源: 題型:
【題目】將集合M={1,2,3,…15}表示為它的5個三元子集(三元集:含三個元素的集合)的并集,并且這些三元子集的元素之和都相等,則每個三元集的元素之和為;請寫出滿足上述條件的集合M的5個三元子集 . (只寫出一組)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義一個集合A的所有子集組成的集合叫做集合A的冪集,記為P(A),用n(A)表示有限集A的元素個數(shù),給出下列命題:①對于任意集合A,都有AP(A);②存在集合A,使得n[P(A)]=3;③用表示空集,若A∩B=,則P(A)∩P(B)=;④若A B,,則P(A) P(B);⑤若n(A)-n(B)=1,則n[P(A)]=2×n[P(B)]其中正確的命題個數(shù)為( )。
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】△ABC是等邊三角形,邊長為4,BC邊的中點為D,橢圓W以A,D為左、右兩焦點,且經(jīng)過B、C兩點.
(1)求該橢圓的標準方程;
(2)過點D且x軸不垂直的直線l交橢圓于M,N兩點,求證:直線BM與CN的交點在一條定直線上.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱錐P﹣ABC中,PA=PC,底面ABC為正三角形.
(Ⅰ)證明:AC⊥PB;
(Ⅱ)若平面PAC⊥平面ABC,AC=PC=2,求二面角A﹣PC﹣B的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中P﹣ABCD,底面ABCD為邊長為 的正方形,PA⊥BD.
(1)求證:PB=PD;
(2)若E,F(xiàn)分別為PC,AB的中點,EF⊥平面PCD,求直線PB與平面PCD所成角的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=2x2﹣mx+2當x∈[﹣2,+∞)時是增函數(shù),則m的取值范圍是( 。
A.(﹣∞,+∞)
B.[8,+∞)
C.(﹣∞,﹣8]
D.(﹣∞,8]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義在R上的函數(shù)y=f(x),恒有f(x)=f(2﹣x)成立,且f′(x)(x﹣1)>0,對任意的x1<x2 , 則f(x1)<f(x2)成立的充要條件是( )
A.x2>x1≥1
B.x1+x2>2
C.x1+x2≤2
D.x2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=(ax﹣1)ex(a≠0,e是自然對數(shù)的底數(shù)).
(1)若函數(shù)f(x)在區(qū)間[1,2]上是單調(diào)減函數(shù),求實數(shù)a的取值范圍;
(2)求函數(shù)f(x)的極值;
(3)設(shè)函數(shù)f(x)圖象上任意一點處的切線為l,求l在x軸上的截距的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com