【題目】每年的4月23日為“世界讀書日”,某調(diào)查機(jī)構(gòu)對(duì)某校學(xué)生做了一個(gè)是否喜愛閱讀的抽樣調(diào)查.該調(diào)查機(jī)構(gòu)從該校隨機(jī)抽查了100名不同性別的學(xué)生(其中男生45名),統(tǒng)計(jì)了每個(gè)學(xué)生一個(gè)月的閱讀時(shí)間,其閱讀時(shí)間(小時(shí))的頻率分布直方圖如圖所示:
(1)求樣本學(xué)生一個(gè)月閱讀時(shí)間的中位數(shù).
(2)已知樣本中閱讀時(shí)間低于的女生有30名,請(qǐng)根據(jù)題目信息完成下面的列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過0.1的前提下認(rèn)為閱讀與性別有關(guān).
列聯(lián)表
男 | 女 | 總計(jì) | |
總計(jì) |
附表:
0.15 | 0.10 | 0.05 | |
2.072 | 2.706 | 3.841 |
其中:.
【答案】(1);(2)不能在犯錯(cuò)誤的概率不超過0.1的前提下認(rèn)為閱讀與性別有關(guān).
【解析】
(1)頻率為0.5對(duì)應(yīng)的點(diǎn)的橫坐標(biāo)為中位數(shù);
(2)100名學(xué)生中男生45名,女生55名,由頻率分布直方圖知,閱讀時(shí)長(zhǎng)大于等于的人數(shù)為50人,小于的也有50人,閱讀時(shí)間低于的女生有30名,這樣可得列聯(lián)表中的各數(shù),得列聯(lián)表,依據(jù)公式計(jì)算,對(duì)照附表可得結(jié)論.
(1)由題意得,直方圖中第一組,第二組的頻率之和為
.
所以閱讀時(shí)間的中位數(shù).
(2)由題意得,男生人數(shù)為45人,因此女生人數(shù)為55人,
由頻率分布直方圖知,閱讀時(shí)長(zhǎng)大于等于的人數(shù)為人,
故列聯(lián)表補(bǔ)充如下:
男 | 女 | 總計(jì) | |
25 | 25 | 50 | |
20 | 30 | 50 | |
總計(jì) | 45 | 55 | 100 |
的觀測(cè)值,所以不能在犯錯(cuò)誤的概率不超過0.1的前提下認(rèn)為閱讀與性別有關(guān).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,將曲線向左平移個(gè)單位長(zhǎng)度得到曲線.
(1)求曲線的參數(shù)方程;
(2)已知為曲線上的動(dòng)點(diǎn), 兩點(diǎn)的極坐標(biāo)分別為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△為一個(gè)等腰三角形形狀的空地,腰的長(zhǎng)為(百米),底的長(zhǎng)為(百米),現(xiàn)決定在空地內(nèi)筑一條筆直的小路(寬度不計(jì)),將該空地分成一個(gè)四邊形和一個(gè)三角形,設(shè)分成的四邊形和三角形的周長(zhǎng)相等.
(1)若小路一端為的中點(diǎn),求此時(shí)小路的長(zhǎng)度;
(2)求分成的四邊形的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)討論的單調(diào)性,并證明有且僅有兩個(gè)零點(diǎn);
(Ⅱ)設(shè)是的一個(gè)零點(diǎn),證明曲線在點(diǎn)處的切線也是曲線的切線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在處的切線與直線平行.
(1)求實(shí)數(shù)的值;
(2)若函數(shù)在上恰有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
(3)記函數(shù),設(shè)是函數(shù)的兩個(gè)極值點(diǎn),若,且恒成立,求實(shí)數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】大數(shù)據(jù)時(shí)代對(duì)于現(xiàn)代人的數(shù)據(jù)分析能力要求越來(lái)越高,數(shù)據(jù)擬合是一種把現(xiàn)有數(shù)據(jù)通過數(shù)學(xué)方法來(lái)代入某條數(shù)式的表示方式,比如,,2,,n是平面直角坐標(biāo)系上的一系列點(diǎn),用函數(shù)來(lái)擬合該組數(shù)據(jù),盡可能使得函數(shù)圖象與點(diǎn)列比較接近.其中一種描述接近程度的指標(biāo)是函數(shù)的擬合誤差,擬合誤差越小越好,定義函數(shù)的擬合誤差為:.已知平面直角坐標(biāo)系上5個(gè)點(diǎn)的坐標(biāo)數(shù)據(jù)如表:
x | 1 | 3 | 5 | 7 | 9 |
y | 12 | 4 | 12 |
若用一次函數(shù)來(lái)擬合上述表格中的數(shù)據(jù),求該函數(shù)的擬合誤差的最小值,并求出此時(shí)的函數(shù)解析式;
若用二次函數(shù)來(lái)擬合題干表格中的數(shù)據(jù),求;
請(qǐng)比較第問中的和第問中的,用哪一個(gè)函數(shù)擬合題目中給出的數(shù)據(jù)更好?請(qǐng)至少寫出三條理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知有窮數(shù)列共有項(xiàng),首項(xiàng),設(shè)該數(shù)列的前項(xiàng)和為,且其中常數(shù).
(1)求證:數(shù)列是等比數(shù)列
(2)若,數(shù)列滿足,求出數(shù)列的通項(xiàng)公式
(3)若(2)中的數(shù)列滿足不等式,求出的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果對(duì)一切正實(shí)數(shù),,不等式恒成立,則實(shí)數(shù)的取值范圍是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),其中為常數(shù).
(1)當(dāng)時(shí),求證:有且僅有一個(gè)零點(diǎn);
(2)若函數(shù)在定義域內(nèi)既有極大值,又有極小值,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com