設函數(shù)是定義域為R上的奇函數(shù).
(1)求的值,并證明當時,函數(shù)是R上的增函數(shù);
(2)已知,函數(shù),,求的值域;
(3)若,試問是否存在正整數(shù),使得恒成立?若存在,請求出所有的正整數(shù);若不存在,請說明理由.

(1)如下(2)(3)存在正整數(shù)=3或4

解析試題分析:解:(1)是定義域為R上的奇函數(shù),,得
此時,,,即是R上的奇函數(shù).
,則
,,在R上為增函數(shù).
(2),即,(舍去),
 
,由(1)知在[1,2]上為增函數(shù),∴
,
時,有最大值;當時,有最小值
的值域
(3)=,,
假設存在滿足條件的正整數(shù),則,
①當時,
②當時,,則,令,則,易證上是增函數(shù),∴
③當時,,則,令,則,易證上是減函數(shù),∴
綜上所述,,∵是正整數(shù),∴=3或4.
∴存在正整數(shù)=3或4,使得恒成立.
考點:函數(shù)的單調性
點評:本題難度較大。函數(shù)的單調性對求最值、判斷函數(shù)值大小關系和證明不等式都有較大幫助,而求函數(shù)的單調性有時可以結合導數(shù)來求。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)是奇函數(shù),是偶函數(shù)。
(1)求的值;
(2)設對任意恒成立,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某造船公司年造船量是20艘,已知造船x艘的產值函數(shù)為R(x)=3700x+45x2-10x3(單位:萬元),成本函數(shù)為C(x)=460x+5000(單位:萬元),又在經濟學中,函數(shù)f(x)的邊際函數(shù)Mf(x)定義為Mf(x)=f(x+1)-f(x).
(1)求利潤函數(shù)P(x)及邊際利潤函數(shù)MP(x);(提示:利潤=產值-成本)
(2)問年造船量安排多少艘時,可使公司造船的年利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2013年,首都北京經歷了59年來霧霾天氣最多的一個月。經氣象局統(tǒng)計,北京市從1月1日至1月30日這30天里有26天出現(xiàn)霧霾天氣!董h(huán)境空氣質量指數(shù)(AQI)技術規(guī)定(試行)》將空氣質量指數(shù)分為六級:其中,中度污染(四級),指數(shù)為151—200;重度污染(五級),指數(shù)為201—300;嚴重污染(六級),指數(shù)大于300. 下面表1是該觀測點記錄的4天里,AQI指數(shù)與當天的空氣水平可見度(千米)的情況,表2是某氣象觀測點記錄的北京1月1日到1月30日AQI指數(shù)頻數(shù)統(tǒng)計結果,
表1:AQI指數(shù)與當天的空氣水平可見度(千米)情況

AQI指數(shù)




空氣可見度(千米)




表2:北京1月1日到1月30日AQI指數(shù)頻數(shù)統(tǒng)計
AQI指數(shù)





頻數(shù)
3
6
12
6
3
(Ⅰ)設變量,根據(jù)表1的數(shù)據(jù),求出關于的線性回歸方程;
(Ⅱ)根據(jù)表2估計這30天AQI指數(shù)的平均值.
(用最小二乘法求線性回歸方程系數(shù)公式,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知二次函數(shù),及函數(shù)
關于的不等式的解集為,其中為正常數(shù)。
(1)求的值;
(2)R如何取值時,函數(shù)存在極值點,并求出極值點;
(3)若,且,求證: 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某公司生產一種產品,每年需投入固定成本0.5萬元,此外每生產1百件這樣的產品,還需增加投入0.25萬元,經市場調查知這種產品年需求量為5百件,產品銷售數(shù)量為t(百件)時,銷售所得的收入為()萬元。
(1)該公司這種產品的年生產量為百件,生產并銷售這種產品得到的利潤為當年產量的函數(shù),求;
(2)當該公司的年產量為多大時當年所獲得的利潤最大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某海邊旅游景點有50輛自行車供游客租賃使用,管理這些自行車的費用是每日115元。根據(jù)經驗,若每輛自行車的日租金不超過6元,則自行車可以全部租出;若超出6元,則每超過1元,租不出的自行車就增加3輛。為了便于結算,每輛自行車的日租金(元)只取整數(shù),并且要求出租自行車一日的總收入必須高于這一日的管理費用,用(元)表示出租自行車的日凈收入(即一日中出租自行車的總收入減去管理費用后的所得).
(Ⅰ)求函數(shù)的解析式及其定義域;
(Ⅱ)試問當每輛自行車的日租金定為多少元時,才能使一日的凈收入最多?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

有一批貨物需要用汽車從生產商所在城市甲運至銷售商所在城市乙.已知從城市甲到城市乙只有兩條公路,且通過這兩條公路所用的時間互不影響.
據(jù)調查統(tǒng)計,通過這兩條公路從城市甲到城市乙的200輛汽車所用時間的頻數(shù)分布如下表:

所用的時間(天數(shù))
10
11
12
13
通過公路1的頻數(shù)
20
40
20
20
通過公路2的頻數(shù)
10
40
40
10
假設汽車A只能在約定日期(某月某日)的前11天出發(fā),汽車B只能在約定日期的前12天出發(fā).
(Ⅰ)為了盡最大可能在各自允許的時間內將貨物運往城市乙,估計汽車A和汽車B應如何選擇各自的路徑;
(Ⅱ)若通過公路1、公路2的“一次性費用”分別為萬元、萬元(其它費用忽略不計),此項費用由生產商承擔.如果生產商恰能在約定日期當天將貨物送到,則銷售商一次性支付給生產商40萬元,若在約定日期前送到,每提前一天銷售商將多支付給生產商2萬元;若在約定日期后送到,每遲到一天,銷售商將少支付給生產商2萬元.如果汽車A、B長期按(Ⅰ)所選路徑運輸貨物,試比較哪輛汽車為生產商獲得的毛利潤更大.(注:毛利潤=(銷售商支付給生產商的費用)一(一次性費用)) .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知 是定義在  上的增函數(shù),且對任意的都滿足 .
(Ⅰ)求的值;   (Ⅱ)若,證明;
(Ⅲ)若,解不等式 .

查看答案和解析>>

同步練習冊答案