【題目】某工廠用7萬元錢購買了一臺(tái)新機(jī)器,運(yùn)輸安裝費(fèi)用2千元,每年投保、動(dòng)力消耗的費(fèi)用也為2千元,每年的保養(yǎng)、維修、更換易損零件的費(fèi)用逐年增加,第一年為2千元,第二年為3千元,第三年為4千元,依此類推,即每年增加1千元.問這臺(tái)機(jī)器最佳使用年限是多少年?并求出年平均費(fèi)用的最小值.

【答案】這臺(tái)機(jī)器最佳使用年限是12年,年平均最小費(fèi)用為1.55萬元.

【解析】

試題分析:

根據(jù)已知可得保養(yǎng)、維修、更換易損零件的費(fèi)用成等差數(shù)列,根據(jù)首項(xiàng)公式,可得累計(jì)費(fèi)用的表達(dá)式;進(jìn)而得到年平均費(fèi)用的表達(dá)式,結(jié)合基本不等式可得年平均費(fèi)用的最小值 .

試題解析:

設(shè)這臺(tái)機(jī)器最佳使用年限是n年,則n年的保養(yǎng)、維修、更換易損零件的總費(fèi)用為:

所以總費(fèi)用為:,

所以n年的年平均費(fèi)用為:

,

當(dāng)且僅當(dāng)時(shí)等號(hào)成立

萬元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在邊長為1的等邊三角形中,分別是邊上的點(diǎn),,的中點(diǎn),交于點(diǎn),將沿折起,得到如圖2所示的三棱錐,其中.

1 證明://平面;

2 證明:平面;

3 當(dāng)時(shí),求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

(1)討論的單調(diào)性;

(2)當(dāng)時(shí),證明:對(duì)于任意的成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=loga(x1)+1(a>0且a≠1)的圖象恒過定點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1討論函數(shù)的單調(diào)性;

2時(shí),關(guān)于的方程有唯一解,求的值;

3當(dāng)時(shí),證明: 對(duì)一切,都有成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4一4:坐標(biāo)系與參數(shù)方程

已知在直角坐標(biāo)系x0y中,曲線為參數(shù)),在以平面直角坐標(biāo)系的原點(diǎn))為極點(diǎn),x軸的正半軸為極軸,取相同單位長度的極坐標(biāo)系中,曲線

(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;

(2)曲線上恰好存在三個(gè)不同的點(diǎn)到曲線的距離相等,分別求這三個(gè)點(diǎn)的極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商品每件成本5元,售價(jià)14元,每星期賣出75件.如果降低價(jià)格,銷售量可以增加,且每星期多賣出的商品件數(shù)與商品單價(jià)的降低值(單位:元,)的平方成正比,已知商品單價(jià)降低1元時(shí),一星期多賣出5件.

(1)將一星期的商品銷售利潤表示成的函數(shù);

(2)如何定價(jià)才能使一個(gè)星期的商品銷售利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓(a>b>0)的左、右焦點(diǎn)為F1、F2,點(diǎn)A在橢圓上,且與x軸垂直.

(1)求橢圓的方程;

(2)過A作直線與橢圓交于另外一點(diǎn)B,求AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),為實(shí)數(shù),),

(1)若,且函數(shù)的值域?yàn)?/span>,求得解析式;

(2)在(1)的條件下,當(dāng)時(shí),是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;

(3)設(shè),,且為偶函數(shù),判斷是否大于零,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案