【題目】已知函數(shù).

1)討論的導數(shù)的單調(diào)性;

2)若有兩個極值點,求實數(shù)的取值范圍,并證明.

【答案】(1)上單調(diào)遞減,上單調(diào)遞增;

2)見解析.

【解析】

1)求出,令,對,討論來求的單調(diào)性;

2)將有兩個極值點,轉(zhuǎn)化為有兩解,繼續(xù)轉(zhuǎn)化為有兩解,構(gòu)造函數(shù),求導為其極小值,可得,即可求得實數(shù)的取值范圍;另外要證明,不妨設,則由(1)根據(jù)的單調(diào)性得,通過變形,轉(zhuǎn)化為證明,進一步變形證明,構(gòu)造函數(shù),利用導數(shù)研究其最小值即可證明.

1)由題意,得.

,則.

①當時,,所以上單調(diào)遞增.

②當時,由,得.

時,上單調(diào)遞減;

時,,上單調(diào)遞增.

2)由于有兩個極值點,,即上有兩解,,

,顯然,故等價于有兩解,,

,則,

時,,所以單調(diào)遞減,

,時,時,

時,,所以單調(diào)遞減,且時,;

時,,所以單調(diào)遞增,且時,,

所以的極小值,有兩解,等價于,得.

不妨設,則.

據(jù)(1上單調(diào)遞減,在上單調(diào)遞增,

,

由于,,且,則

所以,,

,,

欲證明:,等價于證明:,

即證明:,只要證明:,

因為上單調(diào)遞減,,

所以只要證明:

由于,所以只要證明:

即證明:,

,據(jù)(1,

所以上單調(diào)遞增,

所以,

.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點F,過F的直線與拋物線交于A,B兩點,則的最小值是______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】鳳梨穗龍眼原產(chǎn)廈門,是廈門市的名果,栽培歷史已有100多年.龍眼干的級別按直徑的大小分為四個等級(如下表).

級別

三級品

二級品

一級品

特級品

某商家為了解某農(nóng)場一批龍眼干的質(zhì)量情況,隨機抽取了100個龍眼干作為樣本(直徑分布在區(qū)間),統(tǒng)計得到這些龍眼干的直徑的頻數(shù)分布表如下:

頻數(shù)

1

29

7

用分層抽樣的方法從樣本的一級品和特級品中抽取6個,其中一級品有2.

1)求、的值,并估計這批龍眼干中特級品的比例;

2)已知樣本中的100個龍眼干約500克,該農(nóng)場有500千克龍眼干待出售,商家提出兩種收購方案:

方案:以60/千克收購;

方案:以級別分裝收購,每袋100個,特級品40/袋、一級品30/袋、二級品20/袋、三級品10/.

用樣本的頻率分布估計總體分布,哪個方案農(nóng)場的收益更高?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校為了解全校學生的體重情況,從全校學生中隨機抽取了100 人的體重數(shù)據(jù),得到如下頻率分布直方圖,以樣本的頻率作為總體的概率.

1)估計這100人體重數(shù)據(jù)的平均值和樣本方差;(結(jié)果取整數(shù),同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表)

2)從全校學生中隨機抽取3名學生,記為體重在的人數(shù),求的分布列和數(shù)學期望;

3)由頻率分布直方圖可以認為,該校學生的體重近似服從正態(tài)分布.,則認為該校學生的體重是正常的.試判斷該校學生的體重是否正常?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某手機生產(chǎn)企業(yè)為了對研發(fā)的一批最新款手機進行合理定價,將該款手機按事先擬定的價格進行試銷,得到單價(單位:千元)與銷量(單位:百件)的關(guān)系如下表所示:

單價(千元)

1

1.5

2

2.5

3

銷量(百件)

10

8

7

6

已知.

(Ⅰ)若變量,具有線性相關(guān)關(guān)系,求產(chǎn)品銷量(百件)關(guān)于試銷單價(千元)的線性回歸方程;

(Ⅱ)用(Ⅰ)中所求的線性回歸方程得到與對應的產(chǎn)品銷量的估計值,當銷售數(shù)據(jù)對應的殘差滿足時,則稱為一個好數(shù)據(jù),現(xiàn)從5個銷售數(shù)據(jù)中任取3個,求其中好數(shù)據(jù)的個數(shù)的分布列和數(shù)學期望.

參考公式:,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某花圃為提高某品種花苗質(zhì)量,開展技術(shù)創(chuàng)新活動,在A,B實驗地分別用甲、乙方法培育該品種花苗.為觀測其生長情況,分別在A,B試驗地隨機抽選各50株,對每株進行綜合評分,將每株所得的綜合評分制成如圖所示的頻率分布直方圖.記綜合評分為80及以上的花苗為優(yōu)質(zhì)花苗.

1)求圖中a的值,并求綜合評分的中位數(shù);

2)用樣本估計總體,以頻率作為概率,若在A,B兩塊實驗地隨機抽取3棵花苗,求所抽取的花苗中的優(yōu)質(zhì)花苗數(shù)的分布列和數(shù)學期望;

3)填寫下面的列聯(lián)表,并判斷是否有90%的把握認為優(yōu)質(zhì)花苗與培育方法有關(guān).

優(yōu)質(zhì)花苗

非優(yōu)質(zhì)花苗

合計

甲培育法

20

乙培育法

10

合計

附:下面的臨界值表僅供參考.

015

010

005

0025

0010

0005

0001

2072

2706

3841

5024

6635

7879

10828

(參考公式:,其中.)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知離心率為的橢圓,經(jīng)過拋物線的焦點,斜率為1的直線經(jīng)過且與橢圓交于兩點.

1)求面積;

2)動直線與橢圓有且僅有一個交點,且與直線,分別交于兩點,且為橢圓的右焦點,證明為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】等邊的邊長為,點分別是,上的點,且滿足 (如圖(1)),將沿折起到的位置,使二面角成直二面角,連接,(如圖(2)).

(1)求證:平面

(2)在線段上是否存在點,使直線與平面所成的角為?若存在,求出的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直四棱柱的棱長均相等,且BAD=60M是側(cè)棱DD1的中點,N是棱C1D1上的點.

1)求異面直線BD1AM所成角的余弦值;

2)若二面角的大小為,,試確定點N的位置.

查看答案和解析>>

同步練習冊答案