【題目】已知橢圓C: (a>b>0)經(jīng)過點(,1),以原點為圓心、橢圓短半軸長為半徑的圓經(jīng)過橢圓的焦點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)過點(-1,0)的直線l與橢圓C相交于A,B兩點,試問在x軸上是否存在一個定點M,使得恒為定值?若存在,求出該定值及點M的坐標;若不存在,請說明理由.
【答案】(Ⅰ) (Ⅱ)-.
【解析】試題分析:(Ⅰ) 由以原點為圓心、橢圓短半軸長為半徑的圓經(jīng)過橢圓的焦點可知,將點 代入橢圓方程,即可求得和的值,從而求得橢圓方程;(Ⅱ) 分類討論,當斜率存在時,將直線方程代入橢圓方程,由韋達定理及向量數(shù)量積的坐標運算,及恒為定值即可求得的值,從而求得的值及點坐標;當直線的斜率不存在時,點,則時,求得的值及點坐標.
試題解析:(Ⅰ)由題意可得圓的方程為x2+y2=b2.因為該圓經(jīng)過橢圓的焦點,所以半焦距c=b,所以a2=2b2.將點(,1)代入橢圓方程可得b2=2,a2=4,
所以橢圓C的方程為.
(Ⅱ)設(shè)點A(x1,y1),B(x2,y2),M(m,0).
當直線l的斜率k存在時,設(shè)直線l的方程為y=k(x+1).
聯(lián)立得(1+2k2)x2+4k2x+2k2-4=0,
則x1+x2=,x1x2=,
又y1y2=k2(x1+1)(x2+1)=k2(x1x2+x1+x2+1)=k2=,
而=(x1-m)(x2-m)+y1y2=+
=
=為定值,
只需,解得m=-,從而=-,
當直線l的斜率k不存在時,點A(-1, ),B(-1,-),
此時,當m=-時, =(-1-m)(-1-m)-=-.
綜上,存在點M(-,0),使得=-.
【方法點晴】本題主要考查待定系數(shù)求橢圓方程以及直線與橢圓的位置關(guān)系和平面向量數(shù)量積公式,屬于難題.用待定系數(shù)法求橢圓方程的一般步驟;①作判斷:根據(jù)條件判斷橢圓的焦點在軸上,還是在軸上,還是兩個坐標軸都有可能;②設(shè)方程:根據(jù)上述判斷設(shè)方程或 ;③找關(guān)系:根據(jù)已知條件,建立關(guān)于、、的方程組;④得方程:解方程組,將解代入所設(shè)方程,即為所求.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國有悠久的金石文化,印信是金石文化的代表之一.印信的形狀多為長方體、正方體或圓柱體,但南北朝時期的官員獨孤信的印信形狀是“半正多面體”(圖1).半正多面體是由兩種或兩種以上的正多邊形圍成的多面體.半正多面體體現(xiàn)了數(shù)學(xué)的對稱美.圖2是一個棱數(shù)為48的半正多面體,它的所有頂點都在同一個正方體的表面上,且此正方體的棱長為1.則該半正多面體共有________個面,其棱長為_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年初,新冠肺炎疫情襲擊全國,對人民生命安全和生產(chǎn)生活造成嚴重影響.在黨和政府強有力的抗疫領(lǐng)導(dǎo)下,我國控制住疫情后,一方面防止境外疫情輸入,另一方面逐步復(fù)工復(fù)產(chǎn),減輕經(jīng)濟下降對企業(yè)和民眾帶來的損失.為降低疫情影響,某廠家擬在2020年舉行某產(chǎn)品的促銷活動,經(jīng)調(diào)查測算,該產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)萬件與年促銷費用萬元()滿足(為常數(shù)),如果不搞促銷活動,則該產(chǎn)品的年銷售量只能是2萬件.已知生產(chǎn)該產(chǎn)品的固定投入為8萬元,每生產(chǎn)一萬件該產(chǎn)品需要再投入16萬元,廠家將每件產(chǎn)品的銷售價格定為每件產(chǎn)品年平均成本的1.5倍(此處每件產(chǎn)品年平均成本按元來計算)
(1)將2020年該產(chǎn)品的利潤萬元表示為年促銷費用萬元的函數(shù);
(2)該廠家2020年的促銷費用投入多少萬元時,廠家的利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知具有線性相關(guān)關(guān)系的兩個變量之間的幾組數(shù)據(jù)如下表所示:
2 | 4 | 6 | 8 | 10 | |
3 | 6 | 7 | 10 | 12 |
(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程,并估計當時, 的值;
(2)將表格中的數(shù)據(jù)看作五個點的坐標,則從這五個點中隨機抽取2個點,求恰有1個點落在直線右下方的概率.
參考公式: , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的一個焦點與拋物線的焦點重合,且截拋物線的準線所得弦長為.
(1)求該橢圓的方程;
(2)若過點的直線與橢圓相交于, 兩點,且點恰為弦的中點,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個焦點與短軸的一個端點是等邊三角形的三個頂點,且長軸長為4.
(Ⅰ)求橢圓的方程;
(Ⅱ)若是橢圓的左頂點,經(jīng)過左焦點的直線與橢圓交于, 兩點,求與的面積之差的絕對值的最大值.(為坐標原點)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列事件是隨機事件的是( 。
①當x>10時,; ②當x∈R,x2+x=0有解
③當a∈R關(guān)于x的方程x2+a=0在實數(shù)集內(nèi)有解; ④當sinα>sinβ時,α>β( )
A.①②B.②③C.③④D.①④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com