【題目】已知橢圓的兩個焦點與短軸的一個端點是等邊三角形的三個頂點,且長軸長為4.
(Ⅰ)求橢圓的方程;
(Ⅱ)若是橢圓的左頂點,經(jīng)過左焦點的直線與橢圓交于, 兩點,求與的面積之差的絕對值的最大值.(為坐標原點)
【答案】(I);(II)
【解析】試題分析:(1)首先由離心率的概念可得,然后由長軸長可得的值,進而可得出所求的結果;(2)首先設的面積為, 的面積為,并分兩類討論:直線斜率不存在和直線斜率存在,分別聯(lián)立直線與橢圓的方程并表達出,然后結合基本不等式求解其最大值即可得出所求的結果.
試題解析:(1)由題意得,又,則,所以.
又,故橢圓的方程為.
(2)設的面積為, 的面積為.
當直線斜率不存在時,直線方程為,此時不妨設, ,且, 面積相等, .
當直線斜率存在時,設直線方程為,設, ,
和橢圓方程聯(lián)立得,消掉得.
顯然,方程有根,且.
此時.
因為,所以上式(時等號成立).
所以的最大值為.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左右焦點分別為,上頂點為,若直線的斜率為1,且與橢圓的另一個交點為, 的周長為.
(1)求橢圓的標準方程;
(2)過點的直線(直線的斜率不為1)與橢圓交于兩點,點在點的上方,若,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知橢圓C:的左、右項點分別為A1,A2,左右焦點分別為F1,F(xiàn)2,離心率為,|F1F2|=,O為坐標原點.
(1)求橢圓C的方程;
(2)設過點P(4,m)的直線PA1,PA2與橢圓分別交于點M,N,其中m>0,求的面積S的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】網(wǎng)約車的興起豐富了民眾出行的選擇,為民眾出行提供便利的同時也解決了很多勞動力的就業(yè)問題,據(jù)某著名網(wǎng)約車公司“滴滴打車”官網(wǎng)顯示,截止目前,該公司已經(jīng)累計解決退伍軍人轉業(yè)為兼職或專職司機三百多萬人次,梁某即為此類網(wǎng)約車司機,據(jù)梁某自己統(tǒng)計某一天出車一次的總路程數(shù)可能的取值是20、22、24、26、28、,它們出現(xiàn)的概率依次是、、、、t、.
(1)求這一天中梁某一次行駛路程X的分布列,并求X的均值和方差;
(2)網(wǎng)約車計費細則如下:起步價為5元,行駛路程不超過時,租車費為5元,若行駛路程超過,則按每超出(不足也按計程)收費3元計費.依據(jù)以上條件,計算梁某一天中出車一次收入的均值和方差.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: (a>b>0)經(jīng)過點(,1),以原點為圓心、橢圓短半軸長為半徑的圓經(jīng)過橢圓的焦點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設過點(-1,0)的直線l與橢圓C相交于A,B兩點,試問在x軸上是否存在一個定點M,使得恒為定值?若存在,求出該定值及點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在海岸處,發(fā)現(xiàn)北偏東方向,距離為海里的處有一艘走私船,在處北偏西方向,距離為海里的處有一艘緝私艇奉命以海里/時的速度追截走私船,此時,走私船正以海里/時的速度從處向北偏東方向逃竄.
(1)問船與船相距多少海里?船在船的什么方向?
(2)問緝私艇沿什么方向行駛才能最快追上走私船?并求出所需時間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com