A. | (-$\frac{1}{2}$,1] | B. | (-$\frac{1}{2}$,1) | C. | (-$\frac{1}{2}$,$\frac{1}{2}$) | D. | (-$\frac{1}{2}$,$\frac{1}{2}$] |
分析 求導,當x=1時,f′(1)=$\frac{\sqrt{3}cosθ}{2}$+$\frac{sinθ}{2}$=sin(θ+$\frac{π}{3}$),由θ∈(-$\frac{π}{2}$,$\frac{π}{2}$),即可求得θ+$\frac{π}{3}$∈(-$\frac{π}{6}$,$\frac{5π}{6}$),根據正弦函數的性質,即可求得導數f′(1)的取值范圍.
解答 解:f(x)=$\frac{\sqrt{3}cosθ}{6}$x3+$\frac{sinθ}{4}$x2+$\frac{1}{tanθ}$,f′(x)=$\frac{\sqrt{3}cosθ}{2}$x2+$\frac{sinθ}{2}$x,
f′(1)=$\frac{\sqrt{3}cosθ}{2}$+$\frac{sinθ}{2}$=sin(θ+$\frac{π}{3}$),
由θ∈(-$\frac{π}{2}$,$\frac{π}{2}$),則θ+$\frac{π}{3}$∈(-$\frac{π}{6}$,$\frac{5π}{6}$),
則sin(θ+$\frac{π}{3}$)∈(-$\frac{1}{2}$,1],
∴導數f′(1)的取值范圍(-$\frac{1}{2}$,1],
故選A.
點評 本題考查導數的運算,考查輔助角公式的應用,正弦函數的性質,考查計算能力,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
學生編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
數學分數x | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 |
物理分數y | 72 | 77 | 80 | 84 | 88 | 90 | 93 | 95 |
化學分數z | 67 | 72 | 76 | 80 | 84 | 87 | 90 | 92 |
優(yōu)秀 | 不優(yōu)秀 | 合計 | |
數學 | |||
物理 | |||
合計 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 恰有1件正品和恰有1件次品 | B. | 恰有1件次品和至少有1件次品 | ||
C. | 至少有1件次品和至少有1件正品 | D. | 全部是次品和至少有1件正品 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com