【題目】某公司計(jì)劃明年用不超過(guò)6千萬(wàn)元的資金投資于本地養(yǎng)魚(yú)場(chǎng)和遠(yuǎn)洋捕撈隊(duì).經(jīng)過(guò)本地養(yǎng)魚(yú)場(chǎng)年利潤(rùn)率的調(diào)研,得到如圖所示年利潤(rùn)率的頻率分布直方圖.對(duì)遠(yuǎn)洋捕撈隊(duì)的調(diào)研結(jié)果是:年利潤(rùn)率為60%的可能性為0.6,不賠不賺的可能性為0.2,虧損30%的可能性為0.2.假設(shè)該公司投資本地養(yǎng)魚(yú)場(chǎng)的資金為x(x≥0)千萬(wàn)元,投資遠(yuǎn)洋捕撈隊(duì)的資金為y(y≥0)千萬(wàn)元.
(1)利用調(diào)研數(shù)據(jù)估計(jì)明年遠(yuǎn)洋捕撈隊(duì)的利潤(rùn)ξ的分布列和數(shù)學(xué)期望Eξ.
(2)為確保本地的鮮魚(yú)供應(yīng),市政府要求該公司對(duì)本地養(yǎng)魚(yú)場(chǎng)的投資不得低于遠(yuǎn)洋捕撈隊(duì)的一半.適用調(diào)研數(shù)據(jù),給出公司分配投資金額的建議,使得明年兩個(gè)項(xiàng)目的利潤(rùn)之和最大.
【答案】
(1)解:隨機(jī)變量ξ的可能取值為0.6y,0,﹣0.3y,
隨機(jī)變量ξ的分布列為,
ξ | 0.6y | 0 | ﹣0.3y |
P | 0.6 | 0.2 | 0.2 |
∴Eξ=0.36y﹣0.06y=0.3y
(2)解:根據(jù)題意得,x,y滿足的條件為 ①,
由頻率分布直方圖得本地養(yǎng)魚(yú)場(chǎng)的年平均利潤(rùn)率為:
﹣0.3×0.2×0.5+(﹣0.1)×0.2×0.5+0.1×0.2×1.0+0.3×0.2×2.0+0.5×0.2×1.0=0.20,
∴本地養(yǎng)魚(yú)場(chǎng)的年利潤(rùn)為0.20x千萬(wàn)元,
∴明年連個(gè)個(gè)項(xiàng)目的利潤(rùn)之和為z=0.2x+0.3y,
作出不等式組①所表示的平面區(qū)域若下圖所示,即可行域.
當(dāng)直線z=0.2x+0.3y經(jīng)過(guò)可行域上的點(diǎn)M時(shí),截距 最大,即z最大.
解方程組 ,得
∴z的最大值為:0.20×2+0.30×4=1.6千萬(wàn)元.
即公司投資本地養(yǎng)魚(yú)場(chǎng)和遠(yuǎn)洋捕撈隊(duì)的資金應(yīng)分別為2千萬(wàn)元、4千萬(wàn)元時(shí),明年兩個(gè)項(xiàng)目的利潤(rùn)之和的最大值為1.6千萬(wàn)元.
【解析】(1)隨機(jī)變量ξ的可能取值為0.6y,0,﹣0.3y,分別求出相應(yīng)的概率,由此能求出隨機(jī)變量ξ的分布列和Eξ.(2)根據(jù)題意得,x,y滿足的條件,由頻率分布直方圖求出本地養(yǎng)魚(yú)場(chǎng)的年平均利潤(rùn)率為0.20x千萬(wàn)元,從而明年連個(gè)個(gè)項(xiàng)目的利潤(rùn)之和為z=0.2x+0.3y,作出x,y滿足的可行域,由此能求出公司投資本地養(yǎng)魚(yú)場(chǎng)和遠(yuǎn)洋捕撈隊(duì)的資金應(yīng)分別為2千萬(wàn)元、4千萬(wàn)元時(shí),明年兩個(gè)項(xiàng)目的利潤(rùn)之和的最大值為1.6千萬(wàn)元.
【考點(diǎn)精析】掌握頻率分布直方圖是解答本題的根本,需要知道頻率分布表和頻率分布直方圖,是對(duì)相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過(guò)作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在(0,+∞)上的函數(shù)f(x)的導(dǎo)函數(shù)為f'(x),滿足x2f'(x)+xf(x)=lnx,f(e)= ,則f(x)( )
A.有極大值,無(wú)極小值
B.有極小值,無(wú)極大值
C.既有極大值又有極小值
D.既無(wú)極大值也無(wú)極小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某年高考中,某省10萬(wàn)考生在滿分為150分的數(shù)學(xué)考試中,成績(jī)分布近似服從正態(tài)分布N(110,100),則分?jǐn)?shù)位于區(qū)間(130,150]分的考生人數(shù)近似為( ) (已知若X~N(μ,σ2),則P(μ﹣σ<X<μ+σ)=0.6826,P(μ﹣2σ<X<μ+2σ)=0.9544,P(μ﹣3σ<X<μ+3σ)=0.9974.
A.1140
B.1075
C.2280
D.2150
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)是定義在上的偶函數(shù),且當(dāng)時(shí),.現(xiàn)已畫(huà)出函數(shù)在軸左側(cè)的圖象,如圖所示,根據(jù)圖象:
(1)請(qǐng)將函數(shù)的圖象補(bǔ)充完整并寫(xiě)出該函數(shù)的增區(qū)間(不用證明).
(2)求函數(shù)的解析式.
(3)若函數(shù),求函數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中,正確的是( ) ①x∈R,2x>3x;②“x≠3”是“|x|≠3”成立的充分條件;③空間中若直線l若平行于平面α,則α內(nèi)所有直線均與l是異面直線;④空間中有三個(gè)角是直角的四邊形不一定是平面圖形.
A.①③
B.①④
C.②④
D.②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= + .
(1)求f(x)≥f(4)的解集;
(2)設(shè)函數(shù)g(x)=k(x﹣3),k∈R,若f(x)>g(x)對(duì)任意的x∈R都成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C所對(duì)的邊分別是 .
(1)求角C;
(2)若△ABC的中線CD的長(zhǎng)為1,求△ABC的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= (e為自然對(duì)數(shù)的底數(shù)).
(1)當(dāng)a=b=0時(shí),直接寫(xiě)出f(x)的值域(不要求寫(xiě)出求解過(guò)程);
(2)若a= ,求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若f(1)=1,且方程f(x)=1在(0,1)內(nèi)有解,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 ,(其中φ為參數(shù)),曲線 ,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,射線l:θ=α(ρ≥0)與曲線C1 , C2分別交于點(diǎn)A,B(均異于原點(diǎn)O)
(1)求曲線C1 , C2的極坐標(biāo)方程;
(2)當(dāng) 時(shí),求|OA|2+|OB|2的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com