【題目】如圖,在平面直角坐標系xOy中,已知直線lxy2=0,拋物線Cy2=2pxp0.

1)若直線l過拋物線C的焦點,求拋物線C的方程;

2)已知拋物線C上存在關(guān)于直線l對稱的相異兩點PQ.

求證:線段PQ的中點坐標為;

p的取值范圍.

【答案】1;(2證明見解析;②.

【解析】

1)先確定拋物線焦點,再將點代入直線方程;(2利用拋物線點之間關(guān)系進行化簡,結(jié)合中點坐標公式求證;②利用直線與拋物線位置關(guān)系確定數(shù)量關(guān)系:,解出p的取值范圍.

1)拋物線的焦點為

由點在直線上,得,即

所以拋物線C的方程為

2)設(shè),線段PQ的中點

因為點PQ關(guān)于直線對稱,所以直線垂直平分線段PQ,

于是直線PQ的斜率為,則可設(shè)其方程為

消去

因為P Q是拋物線C上的相異兩點,所以

從而,化簡得.

方程(*)的兩根為,從而

因為在直線上,所以

因此,線段PQ的中點坐標為

因為在直線

所以,即

,于是,所以

因此的取值范圍為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】下表提供了工廠技術(shù)改造后某種型號設(shè)備的使用年限x和所支出的維修費y(萬元)的幾組對照數(shù)據(jù):

x(年)

2

3

4

5

6

y(萬元)

1

2.5

3

4

4.5

1)若知道yx呈線性相關(guān)關(guān)系,請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程

2)已知該工廠技術(shù)改造前該型號設(shè)備使用10年的維修費用為9萬元,試根據(jù)(1)求出的線性回歸方程,預(yù)測該型號設(shè)備技術(shù)改造后,使用10年的維修費用能否比技術(shù)改造前降低?參考公式:,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)向量,其中,則下列判斷錯誤的是( )

A.向量軸正方向的夾角為定值(與之值無關(guān))

B.的最大值為

C.夾角的最大值為

D.的最大值為l

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓(),定點,,其中為正實數(shù).

(1)當時,判斷直線與圓的位置關(guān)系;

(2)當時,若對于圓上任意一點均有成立(為坐標原點),求實數(shù)的值;

(3)當時,對于線段上的任意一點,若在圓上都存在不同的兩點,使得點是線段的中點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個口袋中裝有9個大小形狀完全相同的球,球的編號分別為1,2,…,9,隨機摸出兩個球,則兩個球的編號之和大于9的概率是______(結(jié)果用分數(shù)表示).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知復(fù)數(shù)z滿足|z|,z的實部大于0,z2的虛部為2.

1)求復(fù)數(shù)z;

2)設(shè)復(fù)數(shù)z,z2zz2之在復(fù)平面上對應(yīng)的點分別為A,B,C,求(的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司對4月份員工的獎金情況統(tǒng)計如下:

獎金(單位:元)

8000

5000

4000

2000

1000

800

700

600

500

員工(單位:人)

1

2

4

6

12

8

20

5

2

根據(jù)上表中的數(shù)據(jù),可得該公司4月份員工的獎金:①中位數(shù)為800元;②平均數(shù)為1373元;③眾數(shù)為700元,其中判斷正確的個數(shù)為( )

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中正確的是__________.(填上所有正確命題的序號)

①若, ,則; ②若 ,則

③若, ,則; ④若, , ,則

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xoy中,已知曲線C為參數(shù)),以坐標原點為極點,x軸的非負半軸為極軸建立極坐標系,

(1)求曲線C的極坐標方程,若A,B為曲線C上的兩點,證明當時,定值;

(2)若過點且傾斜角為的直線l與曲線C相交于A,B兩點,求的值.

查看答案和解析>>

同步練習冊答案