【題目】設向量,,其中,則下列判斷錯誤的是( )

A.向量軸正方向的夾角為定值(與之值無關(guān))

B.的最大值為

C.夾角的最大值為

D.的最大值為l

【答案】B

【解析】

A中,取z軸的正方向向量,求出的夾角即可判斷命題正確;在B中,計算,利用不等式求出最大值即可判斷命題錯誤;在C中,利用數(shù)量積求出的夾角的最大值,即可判斷命題正確;在D中,利用不等式求出最大值即可判斷命題正確.

解:由向量,,其中,知:
A中,設z軸正方向的方向向量,
向量z軸正方向的夾角的余弦值:

,
∴向量z軸正方向的夾角為定值45°(與c,d之值無關(guān)),故A正確;
B中,,
且僅當acbd時取等號,因此的最大值為1,故B錯誤;
C中,由B可得:
,
的夾角的最大值為,故C正確;
D中,,
adbc的最大值為1.故D正確.
故選:B

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某快遞公司收取快遞費用的標準是:重量不超過的包裹收費10元;重量超過的包裹,除收費10元之外,超過的部分,每超出(不足,按計算)需要再收費5.該公司近60天每天攬件數(shù)量的頻率分布直方圖如下圖所示(同一組數(shù)據(jù)用該區(qū)間的中點值作代表).

1)求這60天每天包裹數(shù)量的平均值和中位數(shù);

2)該公司從收取的每件快遞的費用中抽取5元作為前臺工作人員的工資和公司利潤,剩余的作為其他費用.已知公司前臺有工作人員3人,每人每天工資100元,以樣本估計總體,試估計該公司每天的利潤有多少元?

3)小明打算將四件禮物隨機分成兩個包裹寄出,且每個包裹重量都不超過,求他支付的快遞費為45元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)

1)當時,求函數(shù)在點處的切線方程;

2)若函數(shù)存在兩個極值點,

①求實數(shù)的范圍;

②證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學生為了測試煤氣灶燒水如何節(jié)省煤氣的問題設計了一個實驗,并獲得了煤氣開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)與燒開一壺水所用時間的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如下表),得到了散點圖(如下圖).

表中,.

1)根據(jù)散點圖判斷,哪一個更適宜作燒水時間關(guān)于開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)的回歸方程類型?(不必說明理由)

2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立關(guān)于的回歸方程;

3)若單位時間內(nèi)煤氣輸出量與旋轉(zhuǎn)的弧度數(shù)成正比,那么,利用第(2)問求得的回歸方程知為多少時,燒開一壺水最省煤氣?

附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計值分別為,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】東方商店欲購進某種食品(保質(zhì)期兩天),此商店每兩天購進該食品一次(購進時,該食品為剛生產(chǎn)的).根據(jù)市場調(diào)查,該食品每份進價元,售價元,如果兩天內(nèi)無法售出,則食品過期作廢,且兩天內(nèi)的銷售情況互不影響,為了了解市場的需求情況,現(xiàn)統(tǒng)計該產(chǎn)品在本地區(qū)天的銷售量如下表:

(視樣本頻率為概率)

(1)根據(jù)該產(chǎn)品天的銷售量統(tǒng)計表,記兩天中一共銷售該食品份數(shù)為,求的分布列與期望

(2)以兩天內(nèi)該產(chǎn)品所獲得的利潤期望為決策依據(jù),東方商店一次性購進份,哪一種得到的利潤更大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知, ,且的中點,.

(1)求證:;

(2)求證:平面平面

(3)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右頂點分別為,,上下頂點分別為,左、右焦點分別為,,離心率為e.

1)若,設四邊形的面積為,四邊形的面積為,且,求橢圓C的方程;

2)若,設直線與橢圓C相交于PQ兩點,分別為線段的中點,坐標原點O在以MN為直徑的圓上,且,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在棱長為a的正方體ABCD-A1B1C1D1中,E是棱DD1的中點:

(1)求點D到平面A1BE的距離;

(2)在棱上是否存在一點F,使得B1F∥平面A1BE,若存在,指明點F的位置;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知

(Ⅰ)列表求的所有極值;

(Ⅱ)當時,

(i)求證:;

(ii)若恒成立,求的取值范圍

查看答案和解析>>

同步練習冊答案