本小題満分15分)
已知
為直角梯形,
//
,
,
,
,
平面
,
(1)若異面直線
與
所成的角為
,且
,求
;
(2)在(1)的條件下,設(shè)
為
的中點,能否在
上找到一點
,使
?
(3)在(2)的條件下,求二面角
的大小.
解:建立如圖所
示的空間坐標系
設(shè)
,則
由已知得:
,即
即
(2)設(shè)能在
上
找到一點
,使
,設(shè)
,由(1)知
,則
,又有
,
,
即存在點
滿足要求。
(3)
;
且
平面
。
平面,
所以平面
平面
,故二面角
的大小為
。
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)
如圖,四面體ABCD中,O,E分別為BD,BC的中點,CA=CB=CD=BD=2,AB=AD=
.
(1)求證:AO⊥平面BCD;
(2)求點E到平面ACD的距離.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
.(本題滿分12分)
如圖,
垂直于矩形
所在的平面,
,
,
、
分別是
、
的中點.
(1)求證:
平面
;
(2)求證:平面
平面
;
(3)求四面體
的體積
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題15分)
如圖在三棱錐P-ABC中,PA
分別在棱
,
(1)求證:BC
(2)當D為PB中點時,求AD與平面PAC所成的角的余弦值;
(3)是否存在點E,使得二面角A-DE-P為直二面角,并說明理由。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
((本小題滿分12分)
如圖,已知
,
,
,
,
.
(Ⅰ)求證:
;
(Ⅱ) 若
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
((本小題滿分12分)
如圖,斜三棱柱
-ABC的底面是邊長為2的正三角形,頂點
在底面上的射影是△ABC的中心,
與AB的夾角是45°
(
1)求證:
⊥平面
;
(2)求此棱柱的側(cè)面積 。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
.四面體
的外接球球心在
上,且
,
,在外接球面上
兩點
間的球面距離是
。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
( (本小題滿分
12分)
如圖,在長方體
中,
E、F分別是棱BC,
上的點,CF=AB=2CE,
.
(1)證明AF⊥平面
;
(2)求平面
與平面FED
所成的角的余弦值.
查看答案和解析>>