【題目】已知函數(shù)f(x)= x3+ax2﹣bx(a,b∈R),若y=f(x)圖象上的點(1,﹣ )處的切線斜率為﹣4,
(1)求f(x)的表達式.
(2)求y=f(x)在區(qū)間[﹣3,6]上的最值.
【答案】
(1)解:∵f(x)= x3+ax2﹣bx,
∴f′(x)=x2+2ax﹣b,
∵y=f(x)圖象上的點(1,﹣ )處的切線斜率為﹣4,
∴f′(1)=﹣4,f(1)=﹣ ,
∴1+2a﹣b=﹣4.①, +a﹣b=- ,即a﹣b+4=0.②
由①②解得a=﹣1,b=3,
∴f(x)= x3﹣x2﹣3x
(2)解:∵f(x)= x3﹣x2﹣3x.
∴f′(x)=x2﹣2x﹣3=(x﹣3)(x+1).
令f′(x)=0,解得x=﹣1或3.
∴在x∈[﹣3,6]上,當x變化時,f′(x),f(x)的變化情況如下表:
x | ﹣3 | (﹣3,﹣1) | ﹣1 | (﹣1,3) | 3 | (3,6) | 6 |
f′(x) | + | 0 | ﹣ | 0 | + | ||
f(x) | ﹣9 | 單調遞增↗ | 極大值 | 單調遞減↘ | 極小值﹣9 | 單調遞增↗ | 18 |
∴當x∈[﹣3,6]時,f(x)max=f(6)=18,
f(x)min=f(3)=f(﹣3)=﹣9
【解析】(1)根據(jù)導數(shù)的幾何意義,建立方程關系即可求f(x)的表達式.(2)求函數(shù)的導數(shù),利用函數(shù)的單調性和最值與導數(shù)之間的關系,即可求y=f(x)在區(qū)間[﹣3,6]上的最值.
【考點精析】本題主要考查了函數(shù)的最大(小)值與導數(shù)的相關知識點,需要掌握求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值,比較,其中最大的是一個最大值,最小的是最小值才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】某批次的某種燈泡個,對其壽命進行追蹤調查,將結果列成頻率分布表如下,根據(jù)壽命將燈泡分成優(yōu)等品、正品和次品三個等級,其中壽命大于或等于天的燈泡是優(yōu)等品,壽命小于天的燈泡是次品,其余的燈泡是正品.
壽命 (天) | 頻數(shù) | 頻率 |
合計 |
(1)根據(jù)頻率分布表中的數(shù)據(jù),寫出的值;
(2)某人從這個燈泡中隨機地購買了個,求此燈泡恰好不是次品的概率;
(3)某人從這批燈泡中隨機地購買了個,如果這個燈泡的等級情況恰好與按三個等級分層抽樣所得的結果相同,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】三名工人加工同一種零件,他們在一天中的工作情況如圖所示,其中點Ai的橫、縱坐標分別為第i名工人上午的工作時間和加工的學科&網(wǎng)零件數(shù),點Bi的橫、縱坐標分別為第i名工人下午的工作時間和加工的零件數(shù),i=1,2,3.
①記Qi為第i名工人在這一天中加工的零件總數(shù),則Q1,Q2,Q3中最大的是_________.
②記pi為第i名工人在這一天中平均每小時加工的零件數(shù),則p1,p2,p3中最大的是_________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù)f(x)定義域中任意的x1 , x2(x1≠x2),有如下結論:
(1)f(x1+x2)=f(x1)f(x2)
(2)f(x1x2)=f(x1)+f(x2)
(3)
當f(x)=ex時,上述結論中正確結論的序號是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ln(x+1),g(x)=kx(k∈R).
(1)證明:當x>0時,f(x)<x;
(2)證明:當k<1時,存在x0>0,使得對任意的x∈(0,x0),恒有f(x)>g(x).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面幾何中有如下結論:正三角形ABC的內切圓面積為S1 , 外接圓面積為S2 , 則 ,推廣到空間可以得到類似結論;已知正四面體P﹣ABC的內切球體積為V1 , 外接球體積為V2 , 則 = .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,點P是圓x2+y2=4上一動點,PD⊥x軸于點D,記滿足 = ( + )的動點M的軌跡為Γ. (Ⅰ)求軌跡Γ的方程;
(Ⅱ)已知直線l:y=kx+m與軌跡F交于不同兩點A,B,點G是線段AB中點,射線OG交軌跡Γ于點Q,且 =λ ,λ∈R.
①證明:λ2m2=4k2+1;
②求△AOB的面積S(λ)的解析式,并計算S(λ)的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ax3+bx2+2x在x=﹣1處取得極值,且在點(1,f(1))處的切線的斜率為2. (Ⅰ)求a,b的值:
(Ⅱ)若關于x的方程f(x)+x3﹣2x2﹣x+m=0在[ ,2]上恰有兩個不相等的實數(shù)根,求實數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com