【題目】在平面幾何中有如下結(jié)論:正三角形ABC的內(nèi)切圓面積為S1 , 外接圓面積為S2 , 則 ,推廣到空間可以得到類似結(jié)論;已知正四面體P﹣ABC的內(nèi)切球體積為V1 , 外接球體積為V2 , 則 =

【答案】
【解析】解:從平面圖形類比空間圖形,從二維類比三維, 可得如下結(jié)論:正四面體的外接球和內(nèi)切球的半徑之比是 3:1
故正四面體P﹣ABC的內(nèi)切球體積為V1 , 外接球體積為V2之比等于 = =
所以答案是:

【考點(diǎn)精析】根據(jù)題目的已知條件,利用類比推理的相關(guān)知識可以得到問題的答案,需要掌握根據(jù)兩類不同事物之間具有某些類似(或一致)性,推測其中一類事物具有與另外一類事物類似的性質(zhì)的推理,叫做類比推理.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在邊長為1的等邊三角形ABC中,D,E分別是AB,AC上的點(diǎn),AD=AE,F(xiàn)是BC的中點(diǎn),AF與DE交于點(diǎn)G,△ABF沿AF折起,得到如圖2所示的三棱錐A﹣BCF,其中BC=

(1)求證:平面DEG∥平面BCF;
(2)若D,E為AB,AC上的中點(diǎn),H為BC中點(diǎn),求異面直線AB與FH所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)= ln(1﹣x)的定義域是(
A.(﹣1,1)
B.[﹣1,1)
C.[﹣1,1]
D.(﹣1,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= x3+ax2﹣bx(a,b∈R),若y=f(x)圖象上的點(diǎn)(1,﹣ )處的切線斜率為﹣4,
(1)求f(x)的表達(dá)式.
(2)求y=f(x)在區(qū)間[﹣3,6]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A={x|2a≤x≤a+3},B={x|x<﹣1或x>5},若A∩B=A,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的函數(shù)f(x)滿足對任意x,y∈R恒有f(xy)=f(x)+f(y),且f(x)不恒為0,
(1)求f(1)和f(﹣1)的值;
(2)試判斷f(x)的奇偶性,并加以證明;
(3)若x≥0時(shí)f(x)為增函數(shù),求滿足不等式f(x+1)﹣f(2﹣x)≤0的x取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在四棱錐P﹣ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E、F分別是線段AB、BC的中點(diǎn).
(Ⅰ)證明:PF⊥FD;
(Ⅱ)判斷并說明PA上是否存在點(diǎn)G,使得EG∥平面PFD;
(Ⅲ)若PB與平面ABCD所成的角為45°,求二面角A﹣PD﹣F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)對任意實(shí)數(shù)x,y恒有f(x+y)=f(x)+f(y),且當(dāng)x>0時(shí),f(x)<0,又f(1)=﹣2.
(1)判斷f(x)的奇偶性及單調(diào)性并證明你的結(jié)論;
(2)若對任意x∈R,不等式f(ax2)﹣2f(x)<f(x)+4恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的偶函數(shù)f(x),滿足f(x+1)=f(x﹣1),且f(x)在[﹣3,﹣2]上是增函數(shù),又α、β是銳角三角形的兩個(gè)內(nèi)角,則(
A.f(sinα)>f(cosβ)
B.f(cosα)<f(cosβ)
C.f(sinα)<f(cosβ)
D.f(sinα)<f(sinβ)

查看答案和解析>>

同步練習(xí)冊答案