【題目】選修4-5:不等式選講

已知函數(shù).

1)當(dāng)時(shí),解不等式;

2)若,求的取值范圍.

【答案】1;(2.

【解析】試題分析:(1)首先將函數(shù)的解析式寫成分段函數(shù)形式,然后分段解出不等式的解集,再求它們的并集即可;(2)分、,然后利用三角絕對(duì)值不等式的性質(zhì)求解即可.

試題解析:(1f(x)2|x1||x2|

所以,f(x)在(-∞,1]上遞減,在[1,+)上遞增,

f(0)f()4,故f(x)≤4的解集為{x|0≤x≤}…4

2a1f(x)(a1)|x1||x1||xa|≥a1,

當(dāng)且僅當(dāng)x1時(shí),取等號(hào),故只需a1≥1,得a≥2…6

a1,f(x)2|x1|f(1)01,不合題意. …7

0a1f(x)a|x1|a|xa|(1a)|xa|≥a(1a),

當(dāng)且僅當(dāng)xa時(shí),取等號(hào),故只需a(1a)≥1,這與0a1矛盾. …9

綜上所述,a的取值范圍是[2,+∞)…10

解法2

f(x)≥1f(1)|1a|≥1a0,解得a≥2. …6

當(dāng)a≥2時(shí),f(x)a|x1||xa|

所以,f(x)在(-∞,1]上遞減,在[1,+)上遞增,則f(x)≥f(1)…8

f(x)≥1f(1)a1≥1,解得a≥2

綜上所述,a的取值范圍是[2,+∞)…10

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務(wù)質(zhì)量,收集并整理了2014年1月至2016年12月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了下面的折線圖.

根據(jù)該折線圖,下列結(jié)論正確的是( )

A. 月接待游客逐月增加

B. 年接待游客量逐年減少

C. 各年的月接待游客量高峰期大致在7,8月

D. 各年1月至6月的月接待游客相對(duì)于7月至12月,波動(dòng)性更大,變化比較明顯

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個(gè)命題中,真命題有________.(寫出所有真命題的序號(hào))

①若a,b,c∈R,則“ac2>bc2是“a>b”成立的充分不必要條件;

②命題“x0∈R,x+x0+1<0”的否定是“x∈R,x2+x+1≥0”;

③命題“若|x|≥2,則x≥2或x≤-2”的否命題是“若|x|<2,則-2<x<2”;

④函數(shù)f(x)=ln x+x-在區(qū)間(1,2)上有且僅有一個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于函數(shù),給出下列命題:

若函數(shù)f(x)是R上周期為3的偶函數(shù),且滿足f(1)=1,則f(2)-f(-4)=0;

若函數(shù)f(x)滿足f(x+1)f(x)=2 017,則f(x)是周期函數(shù);

若函數(shù)g(x)=是偶函數(shù),則f(x)=x+1;

函數(shù)y=的定義域?yàn)?/span>.

其中正確的命題是________.(寫出所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】重慶市某廠黨支部10月份開展兩學(xué)一做活動(dòng),將10名黨員技工平均分為甲,乙兩組進(jìn)行技能比賽.要求在單位時(shí)間內(nèi)每個(gè)技工加工零件若干,其中合格零件的個(gè)數(shù)如下表:

1號(hào)

2號(hào)

3號(hào)

4號(hào)

5號(hào)

甲組

4

5

7

9

10

乙組

5

6

7

8

9

(1)分別求出甲,乙兩組技工在單位時(shí)間內(nèi)完成合格零件的平均數(shù)及方,并由此分析兩組技工的技術(shù)水平;

(2)質(zhì)檢部門從該車間甲,乙兩組中各隨機(jī)抽取1名技工,對(duì)其加工的零件進(jìn)行檢測,若兩人完成合格零件個(gè)數(shù)之和超過12件,則稱該車間質(zhì)量合格,求該車間質(zhì)量合格的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某汽車公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)(單位:千元)對(duì)年利潤(單位:萬元)的影響,對(duì)近5年的宣傳費(fèi)和年利潤)進(jìn)行了統(tǒng)計(jì),列出了下表:

(單位:千元)

2

4

7

17

30

(單位:萬元)

1

2

3

4

5

員工小王和小李分別提供了不同的方案.

(1)小王準(zhǔn)備用線性回歸模型擬合的關(guān)系,請(qǐng)你幫助建立關(guān)于的線性回歸方程;(系數(shù)精確到0.01)

(2)小李決定選擇對(duì)數(shù)回歸模型擬合的關(guān)系,得到了回歸方程: ,并提供了相關(guān)指數(shù).請(qǐng)用相關(guān)指數(shù)說明哪個(gè)模型更合適,并預(yù)測年宣傳費(fèi)為4萬元的年利潤.(精確到0.01)(小王也提供了他的分析數(shù)據(jù)

參考公式:相關(guān)指數(shù)

回歸方程中斜率和截距的最小二乘估計(jì)公式分別為: , .參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,角、、所對(duì)的邊分別為、、.已知.

(1)求

(2)若,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,圓的方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的單位長度,直線的極坐標(biāo)方程為.

I)當(dāng)時(shí),判斷直線的關(guān)系;

II)當(dāng)上有且只有一點(diǎn)到直線的距離等于時(shí),求上到直線距離為的點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,六面體ABCDHEFG中,四邊形ABCD為菱形,AE,BF,CG,DH都垂直于平面ABCD.若DA=DH=DB=4,AE=CG=3。

(1)求證:EG⊥DF;

(2)求BE與平面EFGH所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案