【題目】如圖, 橢圓的離心率是,點在橢圓上, 設點分別是橢圓的右頂點和上頂點, 過 點引橢圓的兩條弦、.
(1)求橢圓的方程;
(2)若直線與的斜率是互為相反數(shù).
①直線的斜率是否為定值?若是求出該定值, 若不是,說明理由;
②設、的面積分別為和 ,求的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】已知的左、右焦點分別為,,點在橢圓上,,且的面積為4.
(1)求橢圓的方程;
(2)點是橢圓上任意一點,分別是橢圓的左、右頂點,直線與直線分別交于兩點,試證:以為直徑的圓交軸于定點,并求該定點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市統(tǒng)計局就某地居民的月收入調(diào)查了10000人,并根據(jù)所得數(shù)據(jù)畫出樣本的頻率分布直方圖,每個分組包括左端點,不包括右端點,如第一組表示收入在.
(1)求居民收入在的頻率;
(2)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù)、平均數(shù)及其眾數(shù);
(3)為了分析居民的收入與年齡、職業(yè)等方面的關系,從這10000人中用分層抽樣方法抽出100人作進一步分析,則應月收入為的人中抽取多少人?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,橢圓的離心率為,右頂點為,直線過原點,且點在x軸的上方,直線與分別交直線: 于點、.
(1)若點,求橢圓的方程及△ABC的面積;
(2)若為動點,設直線與的斜率分別為、.
①試問是否為定值?若為定值,請求出;否則,請說明理由;
②求△AEF的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,橢圓的離心率為,右頂點為,直線過原點,且點在x軸的上方,直線與分別交直線:于點、.
(1)若點,求橢圓的方程及△ABC的面積;
(2)若為動點,設直線與的斜率分別為、.
①試問是否為定值?若為定值,請求出;否則,請說明理由;
②求△AEF的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校從參加考試的學生中抽出60名學生,將其成績(均為整數(shù))分成六組[40,50),[50,60) ...[90,100]后,畫出如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:
(Ⅰ) 求成績落在[70,80)上的頻率,并補全這個頻率分布直方圖;
(Ⅱ) 估計這次考試的及格率(60分及以上為及格)和平均分;
(Ⅲ) 設學生甲、乙的成績屬于區(qū)間[40,50),現(xiàn)從成績屬于該區(qū)間的學生中任選兩人,求甲、乙中至少有一人被選的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設l,m是兩條不同的直線,α是一個平面,則下列命題正確的是( )
A. 若l⊥m,mα,則l⊥α
B. 若l⊥α,l∥m,則m⊥α
C. 若l∥α,mα,則l∥m
D. 若l∥α,m∥α,則l∥m
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)若對于任意的,若函數(shù)在區(qū)間上有最值,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com