【題目】某市統(tǒng)計局就某地居民的月收入調(diào)查了10000人,并根據(jù)所得數(shù)據(jù)畫出樣本的頻率分布直方圖,每個分組包括左端點,不包括右端點,如第一組表示收入在.

(1)求居民收入在的頻率;

(2)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù)、平均數(shù)及其眾數(shù);

(3)為了分析居民的收入與年齡、職業(yè)等方面的關(guān)系,從這10000人中用分層抽樣方法抽出100人作進一步分析,則應月收入為的人中抽取多少人?

【答案】(1)(2).(3)

【解析】試題分析:

(1)利用頻率分布直方圖的性質(zhì)求解頻率即可

(2)讀圖求解中位數(shù)、平均數(shù)及其眾數(shù)即可;

(3)利用分層抽樣的結(jié)論求解應月收入為的人中抽取多少人即可.

試題解析:

(1)居民收入在的頻率為.

(2)中位數(shù)為,

平均數(shù)為,

其眾數(shù).

(3)在月收入為的人中抽取人.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在四棱柱中,底面是菱形,且.

(1) 求證: 平面平面 ;

(2)若,求平面與平面所成角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)開發(fā)一種新產(chǎn)品,現(xiàn)準備投入適當?shù)膹V告費,對產(chǎn)品進行促銷,在一年內(nèi),預計年銷量Q(萬件)與廣告費x(萬件)之間的函數(shù)關(guān)系為,已知生產(chǎn)此產(chǎn)品的年固定投入為3萬元,每年產(chǎn)1萬件此產(chǎn)品仍需要投入32萬元,若年銷售額為,而當年產(chǎn)銷量相等。

(1)試將年利潤P(萬件)表示為年廣告費x(萬元)的函數(shù);

(2)當年廣告費投入多少萬元時,企業(yè)年利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】先后2次拋擲一枚骰子,將得到的點數(shù)分別記為

)求滿足的概率;

三條線段的長分別為5,求這三條線段能圍成等腰三角形(含等邊三角形)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,兩點的坐標分別為,動點滿足:直線與直線的斜率之積為.

(1)求動點的軌跡方程;

(2)過點作兩條互相垂直的射線,與1的軌跡分別交于兩點,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】ABC,角A,B,C的對邊分別為a,b,c,cos C.

(1)·,求c的最小值;

(2)設向量x=(2sin B,-),y=,且x∥y,求sin(B-A)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線的右頂點到其一條漸近線的距離等于,拋物線的焦點與雙曲線的右焦點重合,則拋物線上的動點到直線的距離之和的最小值為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖, 橢圓的離心率是,點在橢圓上, 設點分別是橢圓的右頂點和上頂點, 引橢圓的兩條弦.

(1)求橢圓的方程;

(2)若直線的斜率是互為相反數(shù).

直線的斜率是否為定值?若是求出該定值, 若不是,說明理由;

、的面積分別為 ,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角梯形PBCD中,,,A為PD的中點,如圖.將PAB沿AB折到SAB的位置,使SBBC,點E在SD上,且,如圖.

)求證:SA平面ABCD;

)求二面角EACD的正切值.

查看答案和解析>>

同步練習冊答案