設(shè)函數(shù)定義在實數(shù)集R上,,且當=,則有 (   )
A.B.
C.D.
C

試題分析:的對稱軸為,又當=,為增函數(shù)為減函數(shù)
點評:此題中得到對稱軸是突破點
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)上的增函數(shù),設(shè)。
用定義證明:上的增函數(shù);(6分)
證明:如果,則>0,(6分)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

,定義運算“”、“”為:
給出下列各式
,②
,  ④.
其中等式恒成立的是              .(將所有恒成立的等式的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設(shè)是定義在R上的奇函數(shù),且滿足,則     .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分15分)定義在上的奇函數(shù),滿足 ,又當時,是減函數(shù),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

函數(shù)的值域是           .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
設(shè),且,定義在區(qū)間內(nèi)的函數(shù)是奇函數(shù).
(1)求的取值范圍;
(2)討論函數(shù)的單調(diào)性并證明.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知函數(shù)
(1)判斷其奇偶性;
(2)指出該函數(shù)在區(qū)間上的單調(diào)性并證明;
(3)利用(1)和(2)的結(jié)論,指出該函數(shù)在上的增減性.(不用證明)

查看答案和解析>>

同步練習冊答案