在△ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,
且2asinA=(2b+c)sinB+(2c+b)sinC.
(1)求A的大小;
(2)求sinB+sinC的最大值.
(1)A=120°;(2)當B=30°時,sinB+sinC取得最大值1.

試題分析:(1)根據(jù)正弦定理,設=2R,把sinA,sinB,sinC代入2asinA=(2b+c)sinB+(2c+b)sinC求出a2=b2+c2+bc再與余弦定理聯(lián)立方程,可求出cosA的值,進而求出A的值.
(2)根據(jù)(1)中A的值,可知c=60°-B,化簡得sin(60°+B)根據(jù)三角函數(shù)的性質(zhì),得出最大值.
試題解析:(1)設=2R
則a=2RsinA,b=2RsinB,c=2RsinC           .2分
∵2asinA=(2b+c)sinB+(2c+b)sinC
方程兩邊同乘以2R
∴2a2=(2b+c)b+(2c+b)c               2分
整理得a2=b2+c2+bc                .1分
∵由余弦定理得a2=b2+c2-2bccosA                 1分
故cosA=-,A=120°             2分
(2)由(1)得:sinB+sinC=sinB+sin(60°-B)         1分
=             2分
故當B=30°時,sinB+sinC取得最大值1       .1分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

在銳角△ABC中,a、b、c分別為角A、B、C所對的邊,且
a
sinA
=
2c
3

(Ⅰ)確定角C的大。
(Ⅱ)若c=
7
,且△ABC的面積為
3
3
2
,求a2+b2的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

各角的對應邊分別為,滿足,則角的范圍是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

某貨輪在航行中不幸遇險,發(fā)出呼救信號,我海軍護衛(wèi)艦在A處獲悉后,測得該貨輪在北偏東45º方向距離為10海里的C處,并測得貨輪正沿北偏東105º的方向、以每小時9海里的速度向附近的小島靠攏.我海軍護衛(wèi)艦立即以每小時21海里的速度前去營救;則護衛(wèi)艦靠近貨輪所需的時間是   小時.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

, 那么是(   )
A.直角三角形B.等邊三角形C.等腰三角形D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

(3分)(2011•重慶)若△ABC的內(nèi)角A,B,C所對的邊a,b,c滿足(a+b)2﹣c2=4,且C=60°,則ab的值為(        )
A.B.C.1D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題12分)
已知A、B、C的坐標分別為A, B, C, .
(1) 若, 求角的值; (2) 若, 求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在三角形中,,則角A的大小為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在△ABC中,角A、B、C的對邊分別為,若,則B=___________.

查看答案和解析>>

同步練習冊答案