已知橢圓的離心率為,且經(jīng)過點,圓的直徑為的長軸.如圖,是橢圓短軸端點,動直線過點且與圓交于兩點,垂直于交橢圓于點.

(1)求橢圓的方程;
(2)求 面積的最大值,并求此時直線的方程.

(1) (2)

解析試題分析:(1)已知橢圓的離心率為即可得到的關系式,再結(jié)合橢圓過點,代入橢圓方程組成方程組可求解得到橢圓方程; (2) 要求面積可先求兩個弦長度,是一直線與圓相交得到的弦長,可采用圓的弦長公式,而是橢圓的弦長,使用公式求解,把面積表示成變量的函數(shù), 求其最值時可用換元法求解.對當斜率為0時要單獨討論.
試題解析:(1)由已知得到,所以,即.
又橢圓經(jīng)過點,故,
解得,
所以橢圓的方程是
(2)因為直線且都過點
①當斜率存在且不為0時,設直線,直線,即,
所以圓心到直線的距離為,所以直線被圓所截弦
得,
所以
.
所以.
,則,

,即時,等號成立,
面積的最大值為,此時直線的方程為
②當斜率為0時,即,此時
的斜率不存在時,不合題意;
綜上, 面積的最大值為,此時直線的方程為.
考點:直線與圓的位置關系,弦長公式,換元法求函數(shù)最值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知圓x2+y2-6mx-2(m-1)y+10m2-2m-24=0(m∈R).
(1)求證:不論m取什么值,圓心在同一直線l上;
(2)與l平行的直線中,哪些與圓相交,相切,相離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,過圓O外一點M作它的一條切線,切點為A,過A點作直線AP垂直直線OM,垂足為P.

(1)證明:OM·OP=OA2
(2)N為線段AP上一點,直線NB垂直直線ON,且交圓O于B點.過B點的切線交直線ON于K.證明:∠OKM=90°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(1)求圓心在軸上,且與直線相切于點的圓的方程;
(2)已知圓過點,且與圓關于直線對稱,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知點A(-3,0),B(3,0),動點P滿足|PA|=2|PB|.
(1)若點P的軌跡為曲線C,求此曲線的方程;
(2)若點Q在直線l1xy+3=0上,直線l2經(jīng)過點Q且與曲線C只有一個公共點M,求|QM|的最小值.?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知以點C (t∈R,t≠0)為圓心的圓與x軸交于點O、A,與y軸交于點OB,其中O為原點.
(1)求證:△AOB的面積為定值;
(2)設直線2xy-4=0與圓C交于點MN,若|OM|=|ON|,求圓C的方程;
(3)在(2)的條件下,設P、Q分別是直線lxy+2=0和圓C的動點,求|PB|+|PQ|的最小值及此時點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓經(jīng)過點,且圓心在直線上.
(1)求圓的方程;
(2)若點為圓上任意一點,求點到直線的距離的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設橢圓的左右頂點分別為,離心率.過該橢圓上任一點P作PQ⊥x軸,垂足為Q,點C在QP的延長線上,且
(1)求橢圓的方程;
(2)求動點C的軌跡E的方程;
(3)設直線AC(C點不同于A,B)與直線交于點R,D為線段RB的中點,試判斷直線CD與曲線E的位置關系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,銳角的內(nèi)心為,過點作直線的垂線,垂足為,點為內(nèi)切圓與邊的切點.

(Ⅰ)求證:四點共圓;
(Ⅱ)若,求的度數(shù).

查看答案和解析>>

同步練習冊答案