【題目】在一個(gè)特定時(shí)段內(nèi),以點(diǎn)E為中心的7海里以內(nèi)海域被設(shè)為警戒水域.點(diǎn)E正北55海里處有一個(gè)雷達(dá)觀測站A.某時(shí)刻測得一艘勻速直線行駛的船只位于點(diǎn)A北偏東45°且與點(diǎn)A相距海里的位置B,經(jīng)過40分鐘又測得該船已行駛到點(diǎn)A北偏東且與點(diǎn)A相距海里的位置C

1)求該船的行駛速度(單位:海里/時(shí));

2)若該船不改變航行方向繼續(xù)行駛判斷它是否會(huì)進(jìn)入警戒水域,并說明理由.

【答案】1)該船的行駛速度為(海里/時(shí));(2)該船會(huì)進(jìn)入警戒水域,理由見解析.

【解析】

(1)畫出圖像,利用余弦定理求得進(jìn)而求得速度即可.

(2)求出離點(diǎn)E最近的距離再判斷與7的大小比較判斷即可.

1)如圖所示,由題意得,,

由余弦定理,得.

.

∴該船的行駛速度為(海里/時(shí)).

2)該船會(huì)進(jìn)入警戒水域.

理由:如圖所示,設(shè)直線的延長線相交于點(diǎn)Q.

中,由余弦定理,得,從而.

中,由正弦定理,得

,

,且.

過點(diǎn)E直線于點(diǎn)P.

∵在中,,

∴該船會(huì)進(jìn)入警戒水域.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】雙曲線的左、右焦點(diǎn)分別為、,直線且與雙曲線交于、兩點(diǎn).

1)若的傾斜角為,是等腰直角三角形,求雙曲線的標(biāo)準(zhǔn)方程;

2,,若的斜率存在,且,求的斜率;

3)證明:點(diǎn)到已知雙曲線的兩條漸近線的距離的乘積為定值是該點(diǎn)在已知雙曲線上的必要非充分條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù))是定義在上的奇函數(shù).

(1)求的值;

(2)求函數(shù)的值域;

(3)當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,

(1)設(shè)相交于點(diǎn),,且平面,求實(shí)數(shù)的值;

(2)若, 求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù))的圖象為, 關(guān)于點(diǎn)的對稱的圖象為, 對應(yīng)的函數(shù)為

(Ⅰ)求函數(shù)的解析式,并確定其定義域;

(Ⅱ)若直線只有一個(gè)交點(diǎn),求的值,并求出交點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直角坐標(biāo)系xoy中,曲線 (:y=kx (x),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立坐標(biāo)系,曲線的極坐標(biāo)方程為:.

(1)的直角坐標(biāo)方程。

(2)曲線交于點(diǎn)B,求A、B兩點(diǎn)的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面,,,的中點(diǎn).

(1)求和平面所成的角的大小.

(2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知方程上有兩個(gè)不等的實(shí)數(shù)根,則實(shí)數(shù)的取值范圍為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于曲線C,給出下列五個(gè)命題:

①曲線C關(guān)于直線y=x對稱;

②曲線C關(guān)于點(diǎn)對稱;

③曲線C上的點(diǎn)到原點(diǎn)距離的最小值為;

④當(dāng)時(shí),曲線C上所有點(diǎn)處的切線斜率為負(fù)數(shù);

⑤曲線C與兩坐標(biāo)軸所圍成圖形的面積是.

上述命題中,為真命題的是_____.(將所有真命題的編號(hào)填在橫線上)

查看答案和解析>>

同步練習(xí)冊答案