【題目】“共享單車”的出現(xiàn),為我們提供了一種新型的交通方式.某機(jī)構(gòu)為了調(diào)查人們對此種交通方式的滿意度,從交通擁堵不嚴(yán)重的城市和交通擁堵嚴(yán)重的城市分別隨機(jī)調(diào)查了20個用戶,得到了一個用戶滿意度評分的樣本,并繪制出莖葉圖如圖:

(Ⅰ)根據(jù)莖葉圖,比較兩城市滿意度評分的平均值的大小及方差的大。ú灰缶唧w解答過程,給出結(jié)論即可);

(Ⅱ)若得分不低于80分,則認(rèn)為該用戶對此種交通方式“認(rèn)可”,否則認(rèn)為該用戶對此種交通方式“不認(rèn)同”,請根據(jù)此樣本完成此列聯(lián)表,并局此樣本分析是否有95%的把握認(rèn)為城市擁堵與認(rèn)可共享單車有關(guān);

(Ⅲ)若此樣本中的城市和城市各抽取1人,則在此2人中恰有一人認(rèn)可的條件下,此人來自城市的概率是多少?

合計(jì)

認(rèn)可

不認(rèn)可

合計(jì)

附:

0.050

0.010

0.001

3.841

6.635

10.828

【答案】(1) 城市評分的平均值小于城市評分的平均值;

城市評分的方差大于城市評分的方差;(2) 沒有95%的把握認(rèn)為城市擁堵與認(rèn)可共享單車有關(guān);(3).

【解析】試題分析:(1)由莖葉圖可知, 城市評分集中數(shù)值比城市評分?jǐn)?shù)值更大,所以B城市的平均數(shù)較大,方差較小。(2)根據(jù)所填列聯(lián)表,代入,可知沒有95%的把握認(rèn)為城市擁堵與認(rèn)可共享單車有關(guān)。(3)利用條件概率公式可求。

試題分析:(Ⅰ)由莖葉圖可知, 城市評分集中數(shù)值比城市評分?jǐn)?shù)值更大,所以城市評分的平均值小于城市評分的平均值; 城市評分的方差大于城市評分的方差;

(Ⅱ)

td style="width:51.45pt; border-top-style:solid; border-top-width:0.75pt; border-right-style:solid; border-right-width:0.75pt; padding:3.38pt 5.03pt; vertical-align:middle">

合計(jì)

合計(jì)

認(rèn)可

5

10

15

不認(rèn)可

15

10

25

20

20

40

所以沒有95%的把握認(rèn)為城市擁堵與認(rèn)可共享單車有關(guān);

(Ⅲ)設(shè)事件:恰有一人認(rèn)可;事件:來自城市的人認(rèn)可;

事件包含的基本事件數(shù)為,

事件包含的基本事件數(shù)為,

則所求的條件概率.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高中在校學(xué)生2 000人,高一年級與高二年級人數(shù)相同并且都比高三年級多1人.為了響應(yīng)市教育局“陽光體育”號召,該校開展了跑步和跳繩兩項(xiàng)比賽,要求每人都參加而且只參加其中一項(xiàng),各年級參與項(xiàng)目人數(shù)情況如下表:

  年級

項(xiàng)目  

高一年級

高二年級

高三年級

跑步

a

b

c

跳繩

x

y

z

其中a∶b∶c=2∶3∶5,全校參與跳繩的人數(shù)占總?cè)藬?shù)的. 為了了解學(xué)生對本次活動的滿意度,采用分層抽樣從中抽取一個200人的樣本進(jìn)行調(diào)查,則高二年級中參與跑步的同學(xué)應(yīng)抽取多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為為參數(shù)).

(Ⅰ)寫出直線的普通方程與曲線的直角坐標(biāo)方程;

(Ⅱ)設(shè)曲線經(jīng)過伸縮變換得到曲線,若點(diǎn),直線交與, ,求, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)).

(Ⅰ)若曲線在點(diǎn)處的切線與軸垂直,求的值;

(Ⅱ)若函數(shù)有兩個極值點(diǎn),求的取值范圍;

(Ⅲ)證明:當(dāng)時, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點(diǎn)為,右頂點(diǎn)為,設(shè)離心率為,且滿足,其中為坐標(biāo)原點(diǎn).

(Ⅰ)求橢圓的方程;

(Ⅱ)過點(diǎn)(0,1)的直線與橢圓交于,兩點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過橢圓 上一點(diǎn)軸作垂線,垂足為右焦點(diǎn) 、分別為橢圓的左頂點(diǎn)和上頂點(diǎn),且, .

(Ⅰ)求橢圓的方程;

(Ⅱ)若動直線與橢圓交于、兩點(diǎn),且以為直徑的圓恒過坐標(biāo)原點(diǎn).問是否存在一個定圓與動直線總相切.若存在,求出該定圓的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1是否存在實(shí)數(shù)使函數(shù)是奇函數(shù)?并說明理由;

21的條件下,當(dāng), 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】海州市六一兒童節(jié)期間在婦女兒童活動中心舉行小學(xué)生“海州杯”圍棋比賽,規(guī)則如下:甲、乙兩名選手比賽時,每局勝者得1分,負(fù)者得0分,比賽進(jìn)行到有一人比對方多2分或賽滿6局時比賽結(jié)束.設(shè)某校選手甲與另一選手乙比賽時,甲每局獲勝的概率皆為,且各局比賽勝負(fù)互不影響,已知第二局比賽結(jié)束時比賽停止的概率為.

(1)求的值;

(2)設(shè)表示比賽停止時已比賽的局?jǐn)?shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中,若, 處切線的斜率為

(1)求函數(shù)的解析式及其單調(diào)區(qū)間;

(2)若實(shí)數(shù)滿足,且對于任意恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案