【題目】已知橢圓:的右焦點(diǎn)為,右頂點(diǎn)為,設(shè)離心率為,且滿足,其中為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)過點(diǎn)(0,1)的直線與橢圓交于,兩點(diǎn),求面積的最大值.
【答案】(1) ;(2) .
【解析】試題分析:(Ⅰ)設(shè)橢圓的焦半距為c,結(jié)合題意分析可得,結(jié)合橢圓的幾何性質(zhì)可得a、b的值,代入橢圓的方程即可得答案;
(Ⅱ)由題意分析可得直線l與x軸不垂直,設(shè)其方程為y=kx+1,聯(lián)立l與橢圓C的方程,可得(4k2+3)x2+8kx﹣8=0,結(jié)合根與系數(shù)的關(guān)系可以用k表示|MN|與O到l的距離,由三角形面積公式計算可得△OMN的面積 .,由基本不等式分析可得答案.
試題解析:
(Ⅰ)設(shè)橢圓的焦半距為,則,,.
所以,其中,又,聯(lián)立解得,.
所以橢圓的方程是.
(Ⅱ)由題意直線不能與軸垂直,否則將無法構(gòu)成三角形.
當(dāng)直線與軸不垂直時,設(shè)其斜率為,那么的方程為.
聯(lián)立與橢圓的方程,消去,得.
于是直線與橢圓由兩個交點(diǎn)的充要條件是,這顯然成立.
設(shè)點(diǎn),.
由根與系數(shù)的關(guān)系得,.
所以 ,又到的距離.
所以的面 .
令,那么 ,當(dāng)且僅當(dāng)時取等號.
所以面積的最大值是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《中國詩詞大會》(第二季)亮點(diǎn)頗多,十場比賽每場都有一首特別設(shè)計的開場詩詞,在聲光舞美的配合下,百人團(tuán)齊聲朗誦,別有韻味.若《將進(jìn)酒》《山居秋暝》《望岳》《送杜少府之任蜀州》和另確定的兩首詩詞排在后六場,且《將進(jìn)酒》排在《望岳》的前面,《山居秋暝》與《送杜少府之任蜀州》不相鄰且均不排在最后,則后六場的排法有( )
A. 種 B. 種 C. 種 D. 種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年“一帶一路”國際合作高峰論壇于今年5月14日至15日在北京舉行.為高標(biāo)準(zhǔn)完成高峰論壇會議期間的志愿服務(wù)工作,將從27所北京高校招募大學(xué)生志愿者,某調(diào)查機(jī)構(gòu)從是否有意愿做志愿者在某高校訪問了80人,經(jīng)過統(tǒng)計,得到如下丟失數(shù)據(jù)的列聯(lián)表:(,表示丟失的數(shù)據(jù))
無意愿 | 有意愿 | 總計 | |
男 | 40 | ||
女 | 5 | ||
總計 | 25 | 80 |
(1)求出的值,并判斷:能否有99.9%的把握認(rèn)為有意愿做志愿者與性別有關(guān);
(2)若表中無意愿做志愿者的5個女同學(xué)中,3個是大學(xué)三年級同學(xué),2個是大學(xué)四年級同學(xué).現(xiàn)從這5個同學(xué)中隨機(jī)選2同學(xué)進(jìn)行進(jìn)一步調(diào)查,求這2個同學(xué)是同年級的概率.
附參考公式及數(shù)據(jù): ,其中.
0.40 | 0.25 | 0.10 | 0.010 | 0.005 | 0.001 | |
0.708 | 1.323 | 2.706 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(Ⅰ)若函數(shù)為定義域上的單調(diào)函數(shù),求實數(shù)的取值范圍;
(Ⅱ)當(dāng)時,函數(shù)的兩個極值點(diǎn)為, ,且.證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“共享單車”的出現(xiàn),為我們提供了一種新型的交通方式.某機(jī)構(gòu)為了調(diào)查人們對此種交通方式的滿意度,從交通擁堵不嚴(yán)重的城市和交通擁堵嚴(yán)重的城市分別隨機(jī)調(diào)查了20個用戶,得到了一個用戶滿意度評分的樣本,并繪制出莖葉圖如圖:
(Ⅰ)根據(jù)莖葉圖,比較兩城市滿意度評分的平均值的大小及方差的大。ú灰缶唧w解答過程,給出結(jié)論即可);
(Ⅱ)若得分不低于80分,則認(rèn)為該用戶對此種交通方式“認(rèn)可”,否則認(rèn)為該用戶對此種交通方式“不認(rèn)同”,請根據(jù)此樣本完成此列聯(lián)表,并局此樣本分析是否有95%的把握認(rèn)為城市擁堵與認(rèn)可共享單車有關(guān);
(Ⅲ)若此樣本中的城市和城市各抽取1人,則在此2人中恰有一人認(rèn)可的條件下,此人來自城市的概率是多少?
合計 | |||
認(rèn)可 | |||
不認(rèn)可 | |||
合計 |
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四名同學(xué)根據(jù)各自的樣本數(shù)據(jù)研究變量之間的相關(guān)關(guān)系,并求得回歸直線方程和相關(guān)系數(shù),分別得到以下四個結(jié)論:
① ②
③ ④
其中,一定不正確的結(jié)論序號是( )
A. ②③ B. ①④ C. ①②③ D. ②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市英才中學(xué)的一個社會實踐調(diào)查小組,在對中學(xué)生的良好“光盤習(xí)慣”的調(diào)查中,隨機(jī)發(fā)放了120份問卷,對收回的120份有效問卷進(jìn)行統(tǒng)計,得到如下列聯(lián)表:
做不到光盤 | 能做到光盤 | 合計 | |
男 | 45 | 10 | 55 |
女 | 30 | 15 | 45 |
合計 | 75 | 25 | 100 |
(1)現(xiàn)已按是否能做到光盤分層從45份女生問卷中抽取9份問卷,若從這9份問卷中隨機(jī)抽取4份,并記其中能做到光盤的問卷的份數(shù)為,試求隨機(jī)變量的分布列和數(shù)學(xué)期望;
(2)如果認(rèn)為良好“光盤習(xí)慣”與性別有關(guān)犯錯誤的概率不超過,那么根據(jù)臨界值表最精確的的值應(yīng)為多少?請說明理由.
附:獨(dú)立性檢驗統(tǒng)計量,其中.
獨(dú)立性檢驗臨界表:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為菱形,,為的中點(diǎn).
(1)若,求證:;
(2)若,且,點(diǎn)在線段上,試確定點(diǎn)的位置,使二面角大小為,并求出的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com