分析 (Ⅰ)利用已知條件,結(jié)合拋物線的定義,即可求點P的軌跡C的方程;
(Ⅱ)設(shè)點P(x0,y0),點M(-1,m),點N(-1,n),寫出直線PM方程,化簡得,(y0-m)x-(x0+1)y+(y0-m)+m(x0+1)=0.利用△PMN的內(nèi)切圓方程為x2+y2=1,得到圓心(0,0)到直線PM的距離為1,求出$m+n=\frac{{-2{y_0}}}{{{x_0}-1}}$,$mn=\frac{{-({{x_0}+1})}}{{{x_0}-1}}$,求出|MN|.化簡$\frac{|k|}{{|{MN}|}}=\sqrt{\frac{x_0}{{x_0^2+4{x_0}-1}}}=\sqrt{\frac{1}{{{x_0}-\frac{1}{x_0}+4}}}$利用函數(shù)的單調(diào)性求解范圍即可.
解答 解:(Ⅰ)依題意,點P到點F(1,0)的距離等于它到直線l1的距離,…(1分)
∴點P的軌跡是以點F為焦點,直線l1:x=-1為準線的拋物線.…(2分)
∴曲線C的方程為y2=4x.…(3分)
(Ⅱ)設(shè)點P(x0,y0),點M(-1,m),點N(-1,n),
直線PM方程為:$y-m=\frac{{{y_0}-m}}{{{x_0}+1}}({x+1})$,…(4分)
化簡得,(y0-m)x-(x0+1)y+(y0-m)+m(x0+1)=0.
∵△PMN的內(nèi)切圓方程為x2+y2=1,
∴圓心(0,0)到直線PM的距離為1,即$\frac{{|{{y_0}-m+m({{x_0}+1})}|}}{{\sqrt{{{({{y_0}-m})}^2}+{{({{x_0}+1})}^2}}}}=1$.…(5分)
故${({{y_0}-m})^2}+{({{x_0}+1})^2}={({{y_0}-m})^2}+2m({{y_0}-m})({{x_0}+1})+{m^2}{({{x_0}+1})^2}$.
易知x0>1,上式化簡得,$({{x_0}-1}){m^2}+2{y_0}m-({{x_0}+1})=0$.…(6分)
同理,有$({{x_0}-1}){n^2}+2{y_0}n-({{x_0}+1})=0$.…(7分)
∴m,n是關(guān)于t的方程$({{x_0}-1}){t^2}+2{y_0}t-({{x_0}+1})=0$的兩根.
∴$m+n=\frac{{-2{y_0}}}{{{x_0}-1}}$,$mn=\frac{{-({{x_0}+1})}}{{{x_0}-1}}$.…(8分)
∴$|{MN}|=|{m-n}|=\sqrt{{{({m+n})}^2}-4mn}=\sqrt{\frac{4y_0^2}{{{{({{x_0}-1})}^2}}}+\frac{{4({{x_0}+1})}}{{{x_0}-1}}}$.…(9分)
∵$y_0^2=4{x_0}$,$|{y_0}|=2\sqrt{x_0}$,
∴$|{MN}|=\sqrt{\frac{{16{x_0}}}{{{{({{x_0}-1})}^2}}}+\frac{{4({{x_0}+1})}}{{{x_0}-1}}}$=$2\sqrt{\frac{{x_0^2+4{x_0}-1}}{{{{({{x_0}-1})}^2}}}}$.
直線PF的斜率$k=\frac{y_0}{{{x_0}-1}}$,則$|k|=|{\frac{y_0}{{{x_0}-1}}}|=\frac{{2\sqrt{x_0}}}{{|{{x_0}-1}|}}$.
∴$\frac{|k|}{{|{MN}|}}=\sqrt{\frac{x_0}{{x_0^2+4{x_0}-1}}}=\sqrt{\frac{1}{{{x_0}-\frac{1}{x_0}+4}}}$.…(10分)
∵函數(shù)$y=x-\frac{1}{x}$在(1,+∞)上單調(diào)遞增,∴${x_0}-\frac{1}{x_0}>1-1=0$.
∴${x_0}-\frac{1}{x_0}+4>4$.∴$0<\frac{1}{{{x_0}-\frac{1}{x_0}+4}}<\frac{1}{4}$.…(11分)
∴$0<\frac{|k|}{{|{MN}|}}<\frac{1}{2}$.∴$\frac{|k|}{{|{MN}|}}$的取值范圍為$({0,\frac{1}{2}})$.…(12分)
點評 本題考查軌跡方程的求法,拋物線的定義的應(yīng)用,直線與拋物線的位置關(guān)系的綜合應(yīng)用,考查轉(zhuǎn)化思想以及計算能力.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow{AD}=2\overrightarrow{AE}$ | B. | $\overrightarrow{AD}=4\overrightarrow{AE}$ | C. | $\overrightarrow{AD}=2\overrightarrow{EA}$ | D. | $\overrightarrow{AD}=4\overrightarrow{EA}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{7}$ | B. | $\frac{3}{7}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | i<6 | B. | i≤6 | C. | i<5 | D. | i≤7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①② | B. | ③④ | C. | ③ | D. | ①④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com