12.一個(gè)算法的框圖如右圖所示,若該程序輸出的結(jié)果為$\frac{5}{6}$,則判斷框中應(yīng)填入的條件是( 。
A.i<6B.i≤6C.i<5D.i≤7

分析 首先判斷循環(huán)結(jié)構(gòu)類型,得到判斷框內(nèi)的語句性質(zhì).然后對循環(huán)體進(jìn)行分析,找出循環(huán)規(guī)律.判斷輸出結(jié)果與循環(huán)次數(shù)以及i的關(guān)系.最終得出選項(xiàng)

解答 解:模擬程序的運(yùn)行,可得:
第一次循環(huán):S=0+$\frac{1}{1×2}$=$\frac{1}{2}$,i=1+1=2;
第二次循環(huán):S=$\frac{1}{2}$+$\frac{1}{2×3}$=$\frac{4}{6}$,i=2+1=3;
第三次循環(huán):S=$\frac{4}{6}$+$\frac{1}{3×4}$=$\frac{3}{4}$,i=3+1=4;
第四次循環(huán):S=$\frac{3}{4}$+$\frac{1}{4×5}$=$\frac{4}{5}$,i=4+1=5;
第五次循環(huán):S=$\frac{4}{5}$+$\frac{1}{5×6}$=$\frac{5}{6}$,i=5+1=6;
輸出S,不滿足判斷框中的條件;
∴判斷框中的條件為i<6?或i≤5?
故選:A.

點(diǎn)評 本題考查程序框圖,尤其考查循環(huán)結(jié)構(gòu).對循環(huán)體每次循環(huán)需要進(jìn)行分析并找出內(nèi)在規(guī)律.本題屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=cos2x+2sinx
(Ⅰ)求f(-$\frac{π}{6}$)的值;
(Ⅱ)求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓C:$\left\{\begin{array}{l}{x=2cosφ}\\{y=sinφ}\end{array}\right.$(φ為參數(shù)),A,B是C上的動(dòng)點(diǎn),且滿足OA⊥OB(O為坐標(biāo)原點(diǎn)),以原點(diǎn)O為極點(diǎn),以x軸的正半軸為極軸建立極坐標(biāo)系,點(diǎn)D的極坐標(biāo)為(-4,$\frac{π}{3}$).
(1)求線段AD的中點(diǎn)M的軌跡E的普通方程;
(2)利用橢圓C的極坐標(biāo)方程證明$\frac{1}{|OA{|}^{2}}$+$\frac{1}{|OB{|}^{2}}$為定值,并求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)函數(shù)f(x)=cosωx(ω>0),將y=f(x)的圖象向右平移$\frac{π}{4}$個(gè)單位長度后,所得的圖象與原圖象重合,則ω的最小值等于( 。
A.$\frac{1}{2}$B.2C.8D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知?jiǎng)狱c(diǎn)P到點(diǎn)F(1,0)的距離等于它到直線l1:x=-1的距離
(Ⅰ)求點(diǎn)P的軌跡C的方程;
(Ⅱ)若點(diǎn)M,N是直線l1上兩個(gè)不同的點(diǎn),且△PMN的內(nèi)切圓方程為x2+y2=1,直線PF的斜率為k,求$\frac{|k|}{|MN|}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列命題正確的個(gè)數(shù)是(  )
①$\overrightarrow{AB}+\overrightarrow{BA}=\overrightarrow 0$; ②$\overrightarrow{BC}+\overrightarrow{AB}=\overrightarrow{AC}$; ③$\overrightarrow{AB}-\overrightarrow{AC}=\overrightarrow{BC}$; ④$0•\overrightarrow{AB}=0$.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.(1)已知$\overrightarrow a=(8,4)$,求與$\overrightarrow a$垂直的單位向量的坐標(biāo).
(2)若$|{\overrightarrow a}|=2$,$|{\overrightarrow b}|=1$,且$\overrightarrow a$與$\overrightarrow b$的夾角為1200,求$|{\overrightarrow a+\overrightarrow b}|$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知$tanα=\frac{1}{7},sinβ=\frac{{\sqrt{10}}}{10}$分別在下列條件下求α+2β的值:
(1)$α∈({0,\frac{π}{2}}),β∈({0,\frac{π}{2}})$
(2)$α∈({-π,0}),β∈({0,\frac{π}{2}})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列四個(gè)命題中,正確的個(gè)數(shù)是( 。
①命題“?x∈R,x2-x>0”的否定是“?x∈R,x2-x<0”;
②命題“若a>b,則2a>2b-1”的否命題為“若a≤b,則2a≤2b-1”,
③“命題p∨q為真”是“命題p∧q為真”的充分不必要條件;
④在公差為d的等差數(shù)列{an}中,a1=2,a1,a3,a4成等比數(shù)列,則公差d為$-\frac{1}{2}$.
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊答案