分析 (1)求出f′(x)=lnx-2ax+1,由此利用導(dǎo)數(shù)的幾何意義能出過(guò)點(diǎn)(1,f(1))的切線方程.
(2)令g(x)=f′(x)=lnx-2ax+1,則${g}^{'}(x)=\frac{1-2ax}{x}$,由此利用導(dǎo)數(shù)性質(zhì)及分類討論思想能求出a的取值范圍.
(3)0<a<$\frac{1}{2}$時(shí),f(x)有兩個(gè)極值點(diǎn)x1,x2,f(x)在(0,x1)上遞減,在(x1,x2)上遞增,在(x2,+∞)上遞減,令h(x)=lnx+1-2x2,(0<x<1),${h}^{'}(x)=\frac{1-4{x}^{2}}{x}$,由此利用導(dǎo)數(shù)性質(zhì)能求出f(x)的最小值.
解答 解:(1)∵函數(shù)f(x)=x(lnx-ax),
∴f′(x)=lnx-2ax+1,…(1分)
當(dāng)a=$\frac{1}{2}$ 時(shí),f′(1)=0,且f(1)=-$\frac{1}{2}$,
∴過(guò)點(diǎn)(1,f(1))的切線方程為y=-$\frac{1}{2}$.…4 分
(2)令g(x)=f′(x)=lnx-2ax+1,則${g}^{'}(x)=\frac{1-2ax}{x}$,
當(dāng)a≤0時(shí),g′(x)>0,g(x)在(0,+∞)上單調(diào)遞增,
g(x)與X軸只有一個(gè)交點(diǎn)即f(x)只有一個(gè)極值點(diǎn),不合題意.…(5分)
當(dāng)a>0時(shí),x∈(0,$\frac{1}{2a}$)時(shí),g′(x)>0,g(x)在(0,$\frac{1}{2a}$)上遞增,
x∈($\frac{1}{2a},+∞$)時(shí),g′(x)<0,g(x)在($\frac{1}{2a},+∞$)上遞減,
只需g($\frac{1}{2a}$)=ln$\frac{1}{2a}$>0,即0<a<$\frac{1}{2}$時(shí),f(x)有兩個(gè)極值點(diǎn)
故0<a<$\frac{1}{2}$.…(8分)
(3)由(2)知 0<a<$\frac{1}{2}$時(shí),f(x)有兩個(gè)極值點(diǎn)x1,x2,
f(x)在(0,x1)上遞減,在(x1,x2)上遞增,在(x2,+∞)上遞減,
又f′(1)=1-2a>0,則0<x1<1,且lnx1-2ax1+1=0,
解得a=$\frac{ln{x}_{1}+1}{2{x}_{1}}$,此時(shí)a-x1=$\frac{ln{x}_{1}+1-2{{x}_{1}}^{2}}{2{x}_{1}}$,…(10分)
令h(x)=lnx+1-2x2,(0<x<1),${h}^{'}(x)=\frac{1-4{x}^{2}}{x}$,
從而h(x)在(0,$\frac{1}{2}$)上遞增,($\frac{1}{2}$,1)上遞減,
故h(x)≤h($\frac{1}{2}$)=ln$\frac{1}{2}+\frac{1}{2}<0$,
所以a<x1,又f(x)在(0,x1)上遞減,
從而f(x)的最小值為f(a)=a(lna-a2).…(12分)
點(diǎn)評(píng) 本題考查切線方程的求法,考查實(shí)數(shù)的取值范圍的求法,考查函數(shù)的最小值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意導(dǎo)數(shù)性質(zhì)的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 左平移$\frac{π}{12}$ | B. | 左平移$\frac{π}{6}$ | C. | 右平移$\frac{π}{12}$ | D. | 右平移$\frac{π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{8}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -4p2 | B. | -3p2 | C. | -2p2 | D. | -p2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [-6,-2] | B. | $[-6,-\frac{9}{8}]$ | C. | [-5,-3] | D. | [-4,-3] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ①③ | B. | ②③ | C. | ①②④ | D. | ②④ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com