17.若函數(shù)f(x)=ax3+bx2+cx+d(a,b,c,d∈R)有極值點,則導(dǎo)函數(shù)f′(x)的圖象可能是(  )
A.①③B.②③C.①②④D.②④

分析 由若函數(shù)f(x)=ax3+bx2+cx+d(a,b,c,d∈R)有極值點,極值點為f(x0),則函數(shù)f′(x)有零點,且在零點左右兩側(cè)異號,根據(jù)函數(shù)圖象可知:③f′(x0)=0,但x>x0,x<x0,恒有f′(x0)>0,①②④滿足函數(shù)f′(x)有零點,且在零點左右兩側(cè)異號,即可求得答案.

解答 解:若函數(shù)f(x)=ax3+bx2+cx+d(a,b,c,d∈R)有極值點,極值點為f(x0),
則函數(shù)f′(x)有零點,且在零點左右兩側(cè)異號,
由函數(shù)圖象可知:③f′(x0)=0,
但x>x0,x<x0,恒有f′(x0)>0,
故③不正確,
①②④滿足函數(shù)f′(x)有零點,且在零點左右兩側(cè)異號,
故選C.

點評 本題考查導(dǎo)數(shù)的應(yīng)用,考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)性及極值的充要條件,考查數(shù)形結(jié)合思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=x(lnx-ax).
(1)a=$\frac{1}{2}$時,求f(x)在點(1,f(1))處的切線方程;
(2)若f(x)存在兩個不同的極值x1,x2,求a的取值范圍;
(3)在(2)的條件下,求f(x)在(0,a]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知拋物線C:y2=2px(p>0),焦點F($\frac{p}{2}$,0),如果存在過點M(x0,0)$({x_0}>\frac{p}{2})$的直線l與拋物線C交于不同的兩點A、B,使得S△AOM=λ•S△FAB,則稱點M為拋物線C的“λ分點”.
(1)如果M(p,0),直線l:x=p,求λ的值;
(2)如果M(p,0)為拋物線C的“$\frac{4}{3}$分點”,求直線l的方程;
(3)(普通中學(xué)做)命題甲:證明點M(p,0)不是拋物線C的“2分點”;
(重點中學(xué)做)命題乙:如果M(x0,0)$({x_0}>\frac{p}{2})$是拋物線的“2分點”,求x0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)函數(shù)f(x)=x3-4x-a,0<a<2.若f(x)的三個零點為x1,x2,x3,且x1<x2<x3,則( 。
A.x1<-2B.x2>0C.x3<1D.x3>2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.橢圓的兩焦點分別為F1(-4,0),F(xiàn)2(4,0),過F1作弦AB,且△ABF2的周長為20,則此橢圓的方程為$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{9}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.用與球心距離為1的平面去截球,所得截面圓的面積為π,則球的表面積為( 。
A.$\frac{8π}{3}$B.$\frac{32π}{3}$C.D.$\frac{8\sqrt{2}π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.以拋物線x2=4y的焦點F為圓心的圓交拋物線于A、B兩點,交拋物線的準(zhǔn)線于C、D兩點,若四邊形ABCD是矩形,則圓的方程為(  )
A.x2+(y-1)2=3B.x2+(y-1)2=4C.x2+(y-1)2=12D.x2+(y-1)2=16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.關(guān)于x的方程$\sqrt{3}$cosx+sinx-a=0在區(qū)間[0,π]上恰有兩個不等實根α,β,則α+β的值為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.將全體正整數(shù)排成一個三角形數(shù)陣:按照如圖所示排列的規(guī)律:
(1)第7行從左到右的第3個數(shù)為24.
(2)第n行(n≥3)從左向右的第3個數(shù)為$\frac{{n}^{2}-n+6}{2}$.

查看答案和解析>>

同步練習(xí)冊答案