【題目】已知函數(shù)f(x)=-x2-2x,g(x)=
(1)求g[f(1)]的值;
(2)若方程g[f(x)]-a=0有4個實數(shù)根,求實數(shù)a的取值范圍.

【答案】
(1)解:利用解析式直接求解得g[f(1)]=g(-3)=-3+1=-2.
(2)解:令f(x)=t,則原方程化為g(t)=a,易知方程f(x)=t在t∈(-∞,1)內有2個不同的解,則原方程有4個解等價于函數(shù)y=g(t)(t<1)與y=a的圖象有2個不同的交點,作出函數(shù)y=g(t)(t<1)的圖象,由圖象可知,當1≤a< 時,函數(shù)y=g(t)(t<1)與y=a有2個不同的交點,即所求a的取值范圍是 .
【解析】由題意可得函數(shù)y=g[f(x)]與函數(shù)y=a有4個交點,結合圖象可得實數(shù)a的取值范圍.根的存在問題相對來說是零點里頭最重要的一個點,也是比較?嫉狞c,一般都是以中檔題的形式在選擇題里出現(xiàn),在解這種題的時候,做出函數(shù)圖象是首要選擇,然后根據(jù)圖形去尋找答案.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2sin(ωx+φ)(ω>0,|φ|< )的圖象過點 ,且在( )上單調,同時f(x)的圖象向左平移π個單位之后與原來的圖象重合,當 ,且x1≠x2時,f(x1)=f(x2),則f(x1+x2)=( 。
A.﹣
B.﹣1
C.1
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐 中, 平面 , ,底面 是梯形, ,

(1)求證:平面 平面 ;
(2)設 為棱 上一點, ,試確定 的值使得二面角

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若 、 是兩個相交平面,則在下列命題中,真命題的序號為( )
①若直線 ,則在平面 內一定不存在與直線 平行的直線.
②若直線 ,則在平面 內一定存在無數(shù)條直線與直線 垂直.
③若直線 ,則在平面 內不一定存在與直線 垂直的直線.
④若直線 ,則在平面 內一定存在與直線 垂直的直線.
A.①③
B.②③
C.②④
D.①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= lnx-x+ ,其中a>0.
(1)若f(x)在(0,+∞)上存在極值點,求a的取值范圍;
(2)設a∈(1,e],當x1∈(0,1),x2∈(1,+∞)時,記f(x2)-f(x1)的最大值為M(a).那么M(a)是否存在最大值?若存在,求出其最大值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知奇函數(shù)f(x)是R上的單調函數(shù),若函數(shù)y=f(2x2+1)+f(λ-x)只有一個零點,則實數(shù)λ的值是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設有下面四個命題
p1:若復數(shù)z滿足 ∈R,則z∈R;
p2:若復數(shù)z滿足z2∈R,則z∈R;
p3:若復數(shù)z1 , z2滿足z1z2∈R,則z1= ;
p4:若復數(shù)z∈R,則 ∈R.
其中的真命題為( 。
A.p1 , p3
B.p1 , p4
C.p2 , p3
D.p2 , p4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) 有最大值 , ,且 的導數(shù).
(Ⅰ)求 的值;
(Ⅱ)證明:當 , 時,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在矩形 中, 分別為 的中點,現(xiàn)將 沿 折起,得四棱錐

(1)求證: 平面 ;
(2)若平面 平面 ,求四面體 的體積.

查看答案和解析>>

同步練習冊答案