【題目】已知數(shù)列的前項和為 .等 差數(shù)列中, ,且公差

求數(shù)列的通項公式;

(Ⅱ)是否存在正整數(shù),使得?.若存在,求出的最小值;若 不存在,請說明理由.

【答案】(1), ;(2)4.

【解析】試題分析:(Ⅰ)由可得, 兩式相減得, ,數(shù)列是以為首項, 為公比的等比數(shù)列,從而可得數(shù)列的通項公式,利用等差數(shù)列的定義可得的通項公式;(Ⅱ)根據(jù)(Ⅰ)求出,利用錯位相減法可得數(shù)列的前項和,解不等式即可得結(jié)果.

試題解析:(Ⅰ) 當(dāng)時, 兩式相減得, ,, 數(shù)列是以為首項, 為公比的等比數(shù)列, , .

(Ⅱ),令

①-②得: , ,即 , 的最小正整數(shù)為.

【易錯點晴】本題主要考查等比數(shù)列與等差數(shù)列的通項、“錯位相減法”求數(shù)列的和,屬于難題. “錯位相減法”求數(shù)列的和是重點也是難點,利用“錯位相減法”求數(shù)列的和應(yīng)注意以下幾點:掌握運用“錯位相減法”求數(shù)列的和的條件(一個等差數(shù)列與一個等比數(shù)列的積);相減時注意最后一項 的符號;求和時注意項數(shù)別出錯;最后結(jié)果一定不能忘記等式兩邊同時除以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中是假命題的是(  )
A.?∈R,使sin()=+sinβ
B.?∈R,函數(shù)f(x)=sin()都不是偶函數(shù)
C.?m∈R,使f(x)=(m-1)·m2-4m+3是冪函數(shù),且在(0,+∞)上單調(diào)遞減
D.?>0,函數(shù)f(x)=ln2x+lnx-有零點

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a,b是常數(shù),函數(shù)f(x)=ax3+bln(x+ )+3在(﹣∞,0)上的最大值為10,則f(x)在(0,+∞)上的最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a1= (n∈N*
(1)求a2 , a3 , a4并由此猜想數(shù)列{an}的通項公式an的表達式;
(2)用數(shù)學(xué)歸納法證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), (其中為常數(shù), 為自然對數(shù)的底數(shù)),曲線在點處的切線與軸平行.

1)求的單調(diào)區(qū)間;

2)當(dāng)時,若函數(shù)有兩個不同零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A={x|a≤x≤2a﹣4},B={x|x2﹣5x﹣6<0},若A∩B=A,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), )為奇函數(shù),且相鄰兩對稱軸間的距離為.

(1)當(dāng)時,求的單調(diào)遞減區(qū)間;

(2)將函數(shù)的圖象沿軸方向向右平移個單位長度,再把橫坐標(biāo)縮短到原來的(縱坐標(biāo)不變),得到函數(shù)的圖象.當(dāng)時,求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時,若在區(qū)間上的最小值為,求的取值范圍;

2)若對任意 ,且恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知O、A、B三地在同一水平面內(nèi),A地在O地正東方向2km處,B地在O地正北方向2km處,某測繪隊員在A、B之間的直線公路上任選一點C作為測繪點,用測繪儀進行測繪,O地為一磁場,距離其不超過km的范圍內(nèi)會測繪儀等電子儀器形成干擾,使測量結(jié)果不準(zhǔn)確,則該測繪隊員能夠得到準(zhǔn)確數(shù)據(jù)的概率是( 。
A.1-
B.
C.1-
D.

查看答案和解析>>

同步練習(xí)冊答案