【題目】某幾何體的三視圖如圖所示,記A為此幾何體所有棱的長度構(gòu)成的集合,則(

A.3∈A
B.5∈A
C.2 ∈A
D.4 ∈A

【答案】D
【解析】解:根據(jù)三視圖可知幾何體是一個三棱柱截去一個三棱錐,
四邊形ABCD是一個邊長為4的正方形,
且AF⊥面ABCD,DE∥AF,DE=4,AF=2,
∴AF⊥AB、DE⊥DC、DE⊥BD,
∴EC= =4 ,EF=FB= =2
BE= = =4 ,
∵A為此幾何體所有棱的長度構(gòu)成的集合,
∴A={2,4,4 ,4 ,4 },
故選:D.

由三視圖知該幾何體一個直三棱柱切去一個三棱錐所得的幾何體,由三視圖求出幾何元素的長度,判斷出線面的位置關(guān)系,由勾股定理求出幾何體的棱長,即可得到答案.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的通項公式an=5﹣n,其前n項和為Sn , 將數(shù)列{an}的前4項抽去其中一項后,剩下三項按原來順序恰為等比數(shù)列{bn}的前3項,記{bn}的前n項和為Tn , 若存在m∈N* , 使對任意n∈N* , 總有Sn<Tn+λ恒成立,則實數(shù)λ的取值范圍是(
A.λ≥2
B.λ>3
C.λ≥3
D.λ>2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)當時,求函數(shù)的單調(diào)區(qū)間;

(2)若對任意的,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,點C在橢圓M: =1(a>b>0)上,若點A(﹣a,0),B(0, ),且 =
(1)求橢圓M的離心率;
(2)設(shè)橢圓M的焦距為4,P,Q是橢圓M上不同的兩點.線段PQ的垂直平分線為直線l,且直線l不與y軸重合.
①若點P(﹣3,0),直線l過點(0,﹣ ),求直線l的方程;
②若直線l過點(0,﹣1),且與x軸的交點為D.求D點橫坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x|2x2﹣3x﹣9≤0},B={x|x≥m}.若(RA)∩B=B,則實數(shù)m的值可以是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù)與常數(shù),若恒成立,則稱為函數(shù)的一個“P數(shù)對”,設(shè)函數(shù)的定義域為,且。

(1)若的一個“P數(shù)對”,且,求常數(shù)的值;

(2)若(1,1)是的一個“P數(shù)對”,且上單調(diào)遞增,求函數(shù)上的最大值與最小值;

(3)若(-2,0)是的一個“P數(shù)對”,且當時,,求k的值及在區(qū)間上的最大值與最小值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】霧霾影響人們的身體健康,越來越多的人開始關(guān)心如何少產(chǎn)生霧霾,春節(jié)前夕,某市健康協(xié)會為了了解公眾對“適當甚至不燃放煙花爆竹”的態(tài)度,隨機采訪了50人,將凋查情況進行整理后制成下表:

年齡(歲)

[15,25)

[25,35)

[35,45)

[45,55)

[55,65)

[65,75]

頻數(shù)

5

10

15

10

5

5

贊成人數(shù)

4

6

12

7

3

3


(1)以贊同人數(shù)的頻率為概率,若再隨機采訪3人,求至少有1人持贊同態(tài)度的概率;
(2)若從年齡在[15,25),[25,35)的被調(diào)查者中各隨機選取兩人進行追蹤調(diào)查,記選中的4人中不贊同“適當甚至不燃放煙花爆竹”的人數(shù)為X,求隨機變量X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)f(x)滿足f(-x-1)=f(x-1),其圖象過點(0,1),且與x軸有唯一交點。

(1)f(x)的解析式;

(2)設(shè)函數(shù)g(x)=f(x)-(2+a)x,求g(x)[1,2]上的最小值h(a)。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是幾何體的平面展開圖,其中四邊形ABCD為正方形,E,F分別為PA,PD的中點,在此幾何體中,給出下面4個結(jié)論:

直線BE與直線CF共面;②直線BE與直線AF異面;

直線EF平面PBC;④平面BCE平面PAD.

其中正確的有(  )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

同步練習冊答案