6.設(shè)g(x)=ex,f(x)=g[λx+(1-λ)a]-λg(x),其中a,λ是常數(shù),且0<λ<1.
(1)求函數(shù)f(x)的極值;
(2)證明:對(duì)任意正數(shù)a,存在正數(shù)x,使不等式|$\frac{{e}^{x}-1}{x}-1$|<a成立.

分析 (1)首先對(duì)函數(shù)求導(dǎo),使得導(dǎo)函數(shù)等于0,解出x的值,分兩種情況討論:當(dāng)f′(x)>0,當(dāng)f′(x)<0,做出函數(shù)的極值點(diǎn),求出極值.
(2)將原不等式化為 $\frac{{e}^{x}-x-1}{x}$<a,即ex-(1+a)x-1<0,令g(x)=ex-(1+a)x-1,利用導(dǎo)數(shù)研究此函數(shù)的極值,從而得出存在正數(shù)x=ln(a+1),使原不等式成立.

解答 解:(1)∵f′(x)=λg[λx+(1-λ)a]-λg′(x),-----------------(1分)
由f′(x)>0得,g[λx+(1-λ)a]>g′(x),
∴λx+(1-λ)a>x,即(1-λ)(x-a)<0,解得x<a,-----------------(3分)
故當(dāng)x<a時(shí),f′(x)>0;當(dāng)x>a時(shí),f′(x)<0;
∴當(dāng)x=a時(shí),f(x)取極大值f(a)=(1-λ)ea,但f(x)沒(méi)有極小值.-----------------(4分)
(2)∵|$\frac{{e}^{x}-1}{x}$-1|=|$\frac{{e}^{x}-x-1}{x}$|,
又當(dāng)x>0時(shí),令h(x)=ex-x-1,則h′(x)=ex-1>0,
故h(x)>h(0)=0,
因此原不等式化為 $\frac{{e}^{x}-x-1}{x}$<a,即ex-(1+a)x-1<0,-----------------(6分)
令g(x)=ex-(1+a)x-1,則g′(x)=ex-(1+a),
由g′(x)=0得:ex=(1+a),解得x=ln(a+1),
當(dāng)0<x<ln(a+1)時(shí),g′(x)<0;當(dāng)x>ln(a+1)時(shí),g′(x)>0.
故當(dāng)x=ln(a+1)時(shí),g(x)取最小值g[ln(a+1)]=a-(1+a)ln(a+1),---------------(8分)
令s(a)=$\frac{a}{1+a}$-ln(1+a),則s′(a)=-$\frac{a}{{(1+a)}^{2}}$<0.
故s(a)<s(0)=0,即g[ln(a+1)]=a-(1+a)ln(a+1)<0.
因此,存在正數(shù)x=ln(a+1),使原不等式成立.-----------------(10分)

點(diǎn)評(píng) 本小題主要考查函數(shù)在某點(diǎn)取得極值的條件、導(dǎo)數(shù)在最大值、最小值問(wèn)題中的應(yīng)用及應(yīng)用所學(xué)導(dǎo)數(shù)的知識(shí)、思想和方法解決問(wèn)題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.若函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0≤φ<π)滿足下列條件:
(1)f(x)的圖象向左平移π個(gè)單位時(shí)第一次和原圖象重合;
(2)對(duì)任意的x∈R都有$f(x)≤f(\frac{π}{6})=2$成立.
則:(Ⅰ)求f(x)的解析式;
(Ⅱ)若銳角△ABC的內(nèi)角B滿足f(B)=1,且∠B的對(duì)邊b=1,求△ABC的周長(zhǎng)l的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知數(shù)列{an}中,a1=2,a2=3,其前n項(xiàng)和Sn滿足an+1+Sn-1=Sn+1(n≥2,n∈N*).
(1)求證:數(shù)列{an}為等差數(shù)列,并求{an}的通項(xiàng)公式;
(2)設(shè)Tn為數(shù)列$\{\frac{1}{{{a_n}{a_{n+1}}}}\}$的前n項(xiàng)和,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知點(diǎn)H(-1,0),動(dòng)點(diǎn)P是y軸上除原點(diǎn)外的一點(diǎn),動(dòng)點(diǎn)M滿足PH⊥PM,且PM與x軸交于點(diǎn)Q,Q是PM的中點(diǎn).
(1)求動(dòng)點(diǎn)M的軌跡E的方程;
(2)若點(diǎn)F是曲線E的焦點(diǎn),過(guò)F的兩條直線l1,l2關(guān)于x軸對(duì)稱(chēng),且分別交曲線E于AC,BD,若四邊形ABCD的面積等于$\frac{1}{2}$.求直線l1,l2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若0≤θ<2π且同時(shí)滿足cosθ<sinθ和tanθ<sinθ,則θ的取值范圍是( 。
A.($\frac{π}{2}$,π)B.($\frac{π}{4}$,$\frac{3}{4}$π)C.(π,$\frac{3}{2}$π)D.($\frac{3}{4}$π,$\frac{5}{4}$π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.如圖所示為棱長(zhǎng)為1的正方體的表面展開(kāi)圖,在原正方體中,給出下列四個(gè)結(jié)論:
①點(diǎn)M到AB的距離為$\frac{{\sqrt{2}}}{2}$;
②三棱錐C-DNE的體積為$\frac{1}{6}$;
③AB與EF所成的角是$\frac{π}{2}$;
④M到平面ABD的距離為1.
上述結(jié)論中正確的序號(hào)是①②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.在(x-$\frac{2}{x}$)8展開(kāi)式中,常數(shù)項(xiàng)是1120.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.執(zhí)行如圖所示的程序框圖,則輸出的S的值為( 。
A.-2015B.2016C.2014D.-2017

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.函數(shù)f(x)=ln(x2-3x-4)的定義域?yàn)榧螦,函數(shù)g(x)=3x-a(x≤2)的值域?yàn)榧螧.
(1)求集合A,B;
(2)若集合A,B滿足B∩∁RB=∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案