1.若0≤θ<2π且同時滿足cosθ<sinθ和tanθ<sinθ,則θ的取值范圍是( 。
A.($\frac{π}{2}$,π)B.($\frac{π}{4}$,$\frac{3}{4}$π)C.(π,$\frac{3}{2}$π)D.($\frac{3}{4}$π,$\frac{5}{4}$π)

分析 根據(jù)三角不等式和三角函數(shù)的性質(zhì),求出不等式的解集,再由0≤θ<2π求出θ的取值范圍.

解答 解:∵cosθ<sinθ且tanθ<sinθ,
∴$\frac{π}{4}$+2kπ<θ<$\frac{5π}{4}$+2kπ且$\frac{π}{2}$+2kπ<θ<π+2kπ或$\frac{3π}{2}$+2kπ<θ<2π+2kπ,
∴所求的解集是$\frac{π}{2}$+2kπ<θ<π+2kπ,
又∵0≤θ<2π,∴所求的θ的取值范圍是($\frac{π}{2}$,π).
故選:A.

點(diǎn)評 本題考查了利用三角函數(shù)性質(zhì)求三角函數(shù)的不等式,需要根據(jù)題意列出三角函數(shù)的不等式,再由三角函數(shù)的性質(zhì)求出解集,結(jié)合已知的范圍再求出交集,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)的圖象如圖,則它的一個可能的解析式為(  )
A.y=2$\sqrt{x}$B.y=4-$\frac{4}{x+1}$C.y=log3(x+1)D.y=$\root{3}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.p:x≠2或y≠4是q:x+y≠6的必要不充分條件.(四個選一個填空:充分不必要,必要不充分,充要,既不充分也不必要)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若α,β∈[-$\frac{π}{2}$,$\frac{π}{2}$],且αsinα>βsinβ,則下列關(guān)系式:①α>β; ②α<β; ③α+β>0; ④|α|>|β|; ⑤α2≤β2
其中正確的序號是④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=2,an+1=2Sn+2(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{({a}_{n}+2)•({a}_{n+1}+2)}{{a}_{n}}$,數(shù)列{$\frac{1}{_{n}}$}的前n項(xiàng)和為Tn,試證明:Tn<$\frac{1}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)g(x)=ex,f(x)=g[λx+(1-λ)a]-λg(x),其中a,λ是常數(shù),且0<λ<1.
(1)求函數(shù)f(x)的極值;
(2)證明:對任意正數(shù)a,存在正數(shù)x,使不等式|$\frac{{e}^{x}-1}{x}-1$|<a成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.正方體ABCD-A1B1C1D1的棱長為1,E,F(xiàn)分別為BB1,CD的中點(diǎn),則點(diǎn)F到平面A1D1E的距離為$\frac{\sqrt{5}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在平面直角坐標(biāo)系xOy中,直線l過點(diǎn)P(-1,2),傾斜角為$\frac{3π}{4}$.以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸,取相同的單位長度建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=4cosθ.
(1)寫出直線l的參數(shù)方程和曲線C的直角坐標(biāo)方程;
(2)記直線l和曲線C的兩個交點(diǎn)分別為A,B,求|PA|+|PB|,|PA|•|PB|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某中學(xué)高一、高二、高三年級分別有60人、30人、45人選修了學(xué)校開設(shè)的某門校本課程,學(xué)校用分層抽樣的方法從三個年級選修校本課程的人中抽取了一個樣本,了解學(xué)生對校本課程的學(xué)習(xí)情況.已知樣本中高三年級有3人.
(Ⅰ)分別求出樣本中高一、高二年級的人數(shù);
(Ⅱ)用Ai(i=1,2…)表示樣本中高一年級學(xué)生,Bi(i=1,2…)表示樣本中高二年級學(xué)生,現(xiàn)從樣本中高一、高二年級的所有學(xué)生中隨機(jī)抽取2人.
(ⅰ)用以上學(xué)生的表示方法,采用列舉法列舉出上訴所有可能的情況;
(ⅱ)求(。┲2人在同一年級的概率.

查看答案和解析>>

同步練習(xí)冊答案