精英家教網 > 高中數學 > 題目詳情
15.執(zhí)行如圖所示的程序框圖,則輸出的S的值為( 。
A.-2015B.2016C.2014D.-2017

分析 分析程序中各變量、各語句的作用,再根據流程圖所示的順序,可知:該程序的作用是累加并輸出S=-1+3-…+-2015+2016的值.

解答 解:分析程序中各變量、各語句的作用,
再根據流程圖所示的順序,可知:
該程序的作用是累加并輸出S=-1+3-…+-2015+2016=2016.
故選B

點評 根據流程圖(或偽代碼)寫程序的運行結果,是算法這一模塊最重要的題型,其處理方法是::①分析流程圖(或偽代碼),從流程圖(或偽代碼)中既要分析出計算的類型,又要分析出參與計算的數據(如果參與運算的數據比較多,也可使用表格對數據進行分析管理)⇒②建立數學模型,根據第一步分析的結果,選擇恰當的數學模型③解模.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

15.在邊長為3的正三角形ABC中,E,F,P分別是AB,AC,BC邊上的點,滿足$\frac{AE}{EB}$=$\frac{CF}{FA}$=$\frac{CP}{PB}$=$\frac{1}{2}$,將△AEF沿EF折起到△A1EF的位置,使二面角A1-EF-B成直二面角,連結A1B,A1P(如圖),則以下結論錯誤的是( 。
A.CF∥平面A1EP
B.A1E⊥平面BEP
C.點B到面A1PF的距離為$\sqrt{3}$
D.異面直線BP與A1F所成角的余弦值為$\frac{3}{4}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

6.設g(x)=ex,f(x)=g[λx+(1-λ)a]-λg(x),其中a,λ是常數,且0<λ<1.
(1)求函數f(x)的極值;
(2)證明:對任意正數a,存在正數x,使不等式|$\frac{{e}^{x}-1}{x}-1$|<a成立.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

3.在銳角△ABC中,∠A=$\frac{π}{3}$,∠BAC的平分線交邊BC于點D,|AD|=1,則△ABC面積的取值范圍是(  )
A.[$\frac{\sqrt{10}}{6}$,$\frac{\sqrt{7}}{4}$]B.[$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{7}}{4}$]C.[$\frac{\sqrt{10}}{6}$,$\frac{3\sqrt{3}}{8}$)D.[$\frac{\sqrt{3}}{3}$,$\frac{3\sqrt{3}}{8}$)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

10.在平面直角坐標系xOy中,直線l過點P(-1,2),傾斜角為$\frac{3π}{4}$.以坐標原點為極點,x軸正半軸為極軸,取相同的單位長度建立極坐標系,曲線C的極坐標方程為ρ=4cosθ.
(1)寫出直線l的參數方程和曲線C的直角坐標方程;
(2)記直線l和曲線C的兩個交點分別為A,B,求|PA|+|PB|,|PA|•|PB|

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

20.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右支上存在一點M,使得|PQ|=|MQ|,其中P(-b,0),Q(b,0),若tan∠MQP=-2$\sqrt{2}$,則雙曲線C的漸近線方程為y=±$\frac{\sqrt{41}}{5}$x.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

7.若2x=9,${log_2}\frac{8}{3}=y$,則x+2y=6.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

4.復數$z=\frac{3-i}{1-i}$的共軛復數是2-i.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

5.已知f(x)=2|x|+x2,若f(a-1)≤3,則a的取值范圍是[0,2].

查看答案和解析>>

同步練習冊答案