【題目】已知A={x|x2﹣2x﹣3<0},B={x||x﹣1|<a}.
(1)若AB,求實數a的取值范圍;
(2)若BA,求實數a的取值范圍.
【答案】
(1)解:由題意:集合A={x|x2﹣2x﹣3<0}={|x|﹣1<x<3},
集合B={x||x﹣1|<a}={x|﹣a<x﹣1<a}={x|1﹣a<x<1+a}.
∵A≠,AB,
∴B≠.
則有: 或
解得:a>2.
故得實數a的取值范圍是(2,+∞)
(2)解:由(1)可得:A={|x|﹣1<x<3},集合B={x|1﹣a<x<1+a}
∵BA,A≠,
∴當B=時,滿足題意,此時1﹣a≥1+a,解得:a≤0.
當B≠時,要使BA成立,則有: 或 ,
解得:0<a<2.
綜上所述:實數a的取值范圍是(﹣∞,2)
【解析】(1)化簡集合A,集合B,根據AB,建立條件關系即可求實數a的取值范圍.(2)根據BA,建立條件關系即可求實數a的取值范圍.
科目:高中數學 來源: 題型:
【題目】已知位置向量 =(log2(m2+3m﹣8),log2(2m﹣2)), =(1,0),若以OA、OB為鄰邊的平行四邊形OACB的頂點C在函數y= x的圖象上,則實數m= .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】盒子中有大小相同的球6個,其中標號為1的球2個,標號為2的球3個.標號為3的球1個,第一次從盒子中任取1個球,放回后第二次再任取1個球 (假設取到每個球的可能性都相同).記第一次與第二次取到球的標號之和為ξ.
(1)求隨機變量ξ的分布列:
(2)求隨機變量ξ的期望Eξ.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在某大學自主招生考試中,所有選報Ⅱ類志向的考生全部參加了“數學與邏輯”和“閱讀與表達”兩個科目的考試,成績分為, , , , 五個等級.某考場考生兩科的考試成績的數據如下圖所示,其中“數學與邏輯”科目的成績?yōu)?/span>的考生有人.
(Ⅰ)求該考場考生中“閱讀與表達”科目中成績?yōu)?/span>的人數.
(Ⅱ)若等級, , , , 分別對應分, 分, 分, 分, 分.
(。┣笤摽紙隹忌“數學與邏輯”科目的平均分.
(ⅱ)若該考場共有人得分大于分,其中有人分, 人分, 人分.
從這人中隨機抽取兩人,求兩人成績之和的分布列和數學期望.
科目:數學與邏輯 | 科目:閱讀與表達 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2acos2x+2 bsinxcosx,且f(0)=2,f( )= +1.
(1)求f(x)的最大值及單調遞減區(qū)間;
(2)若α≠β,α,β∈(0,π),且f(α)=f(β),求tan(α+β)的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知分別是橢圓的左、右焦點,離心率為,分別是橢圓的上、下頂點,.
(1)求橢圓的方程;
(2)過作直線與交于兩點,求三角形面積的最大值(是坐標原點).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】【選修4—4:坐標系與參數方程】
將圓上每一點的橫坐標保持不變,縱坐標變?yōu)樵瓉淼?/span>2倍,得曲線C.
(Ⅰ)寫出C的參數方程;
(Ⅱ)設直線與C的交點為,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,求過線段的中點且與垂直的直線的極坐標方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數 f (x) = x 2 + x,若不等式 f (-x) + f (x)≤2 | x | 的解集為C. (1)求集合C (2)若方程 f (a x)-a x + 1 = 5(a > 0,a≠1)在 C上有解,求實數 a 的取值范圍; (3)記 f (x) 在C 上的值域為 A,若 g(x) = x 3-3tx + ,x∈[0,1] 的值域為B,且 A B,求實數 t 的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com