已知各項都為正的等比數(shù)列{an}滿足a7a62a5,存在兩項am,an使得4a1,則的最小值為(  )

A. B. C. D.

 

A

【解析】a7a62a5,得a1q6a1q52a1q4,整理有q2q20,解得q2q=-1(與條件中等比數(shù)列的各項都為正矛盾,舍去),又由 4a1,得aman16,即2mn216,即有mn24,亦即mn6,那么 (mn) ,當(dāng)且僅當(dāng),即n2m4時取得最小值

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練16練習(xí)卷(解析版) 題型:填空題

已知點F是雙曲線1(a>0b>0)的左焦點,點E是該雙曲線的右頂點,過點F且垂直于x軸的直線與雙曲線交于AB兩點,若ABE是銳角三角形,則該雙曲線的離心率e的取值范圍是________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練12練習(xí)卷(解析版) 題型:解答題

如圖,在四棱錐P-ABCD中,PA平面ABCD,底面ABCD是菱形,點O是對角線ACBD的交點,MPD的中點,AB2,BAD60°.

(1)求證:OM平面PAB;

(2)求證:平面PBD平面PAC

(3)當(dāng)四棱錐P-ABCD的體積等于時,求PB的長.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練11練習(xí)卷(解析版) 題型:選擇題

某四棱臺的三視圖如圖所示,則該四棱臺的體積是(  )

A4 B. C. D6

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練10練習(xí)卷(解析版) 題型:填空題

設(shè)Sn為數(shù)列{an}的前n項和,若 (nN*)是非零常數(shù),則稱該數(shù)列為和等比數(shù)列;若數(shù)列{cn}是首項為2,公差為d(d≠0)的等差數(shù)列,且數(shù)列{cn}和等比數(shù)列,則d________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷5練習(xí)卷(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,橢圓C1(a>b>0)的離心率為,以坐標(biāo)原點為圓心,橢圓C的短半軸長為半徑的圓與直線xy20相切.

(1)求橢圓C的方程;

(2)已知點P(0,1)Q(0,2),設(shè)M,N是橢圓C上關(guān)于y軸對稱的不同兩點,直線PMQN相交于點T.求證:點T在橢圓C上.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷5練習(xí)卷(解析版) 題型:選擇題

已知點P(x,y)是直線kxy40(k>0)上一動點,PA,PB是圓Cx2y22y0的兩條切線,A,B為切點,若四邊形PACB的最小面積是2,則k的值為(  )

A4 B3 C2 D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷4練習(xí)卷(解析版) 題型:選擇題

如圖,在正四棱柱ABCD-A1B1C1D1中,AA12,ABBC1,動點P,Q分別在線段C1D,AC上,則線段PQ長度的最小值是(  )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷1練習(xí)卷(解析版) 題型:填空題

小王參加人才招聘會,分別向AB兩個公司投遞個人簡歷.假定小王得到A公司面試的概率為,得到B公司面試的概率為p,且兩個公司是否讓其面試是獨立的,記X為小王得到面試的公司個數(shù).若X0時的概率P(X0),則隨機變量X的數(shù)學(xué)期望為________

 

查看答案和解析>>

同步練習(xí)冊答案