所有真約數(shù)(除本身之外的正約數(shù))的和等于它本身的正整數(shù)叫做完全數(shù).
如:;
;
.
已經(jīng)證明:若是質(zhì)數(shù),則是完全數(shù),.請(qǐng)寫出一個(gè)四位完全數(shù) ;又,所以的所有正約數(shù)之和可表示為;
,所以的所有正約數(shù)之和可表示為;
按此規(guī)律,的所有正約數(shù)之和可表示為 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
用反證法證明命題“如果a>b,那么>”時(shí),假設(shè)的內(nèi)容應(yīng)為______________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
在正整數(shù)數(shù)列中,由1開始依次按如下規(guī)則取它的項(xiàng):第一次取1,第二次取2個(gè)連續(xù)偶數(shù)2、4;第三次取3個(gè)連續(xù)奇數(shù)5、7、9;第四次取4個(gè)連續(xù)偶數(shù)10、12、14、16;第五次取5個(gè)連續(xù)奇數(shù)17、19、21、23、25.按此規(guī)則一直取下去,得到一個(gè)子數(shù)列1,2,4,5,7,9,10,12,14,16,17,….則在這個(gè)子數(shù)列中,由1開始的第15個(gè)數(shù)是 ,第2014個(gè)數(shù)是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
如下圖①②③④所示,它們都是由小正方形組成的圖案.現(xiàn)按同樣的排列規(guī)則進(jìn)行排列,記第n個(gè)圖形包含的小正方形個(gè)數(shù)為f(n),則
(1)f(5)= ;
(2)f(n)= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
已知正三角形內(nèi)切圓的半徑與它的高的關(guān)系是:,把這個(gè)結(jié)論推廣到空間正四面體,則正四面體內(nèi)切球的半徑與正四面體高的關(guān)系是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
古希臘著名的畢達(dá)哥拉斯學(xué)派把1、3、6、10 這樣的數(shù)稱為“三角形數(shù)”,而把1、4、9、16 這樣的數(shù)稱為“正方形數(shù)”.如圖中可以發(fā)現(xiàn),任何一個(gè)大于1的“正方形數(shù)”都可以看作兩個(gè)相鄰“三角形數(shù)”之和,下列等式中,符合這一規(guī)律的表達(dá)式是
①13=3+10; ②25=9+16 ③36=15+21; ④49=18+31;⑤64=28+36
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
已知f(n)=1+++…+(n∈N*),用數(shù)學(xué)歸納法證明f(2n)>時(shí),f(2k+1)-f(2k)等于 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com