【題目】從分別寫有張卡片中隨機抽取張,放回后再隨機抽取張,則抽得的第一張卡片,上的數(shù)不大于第二張卡片上的數(shù)的概率為( )

A. B. C. D.

【答案】D

【解析】

分析:基本事件總數(shù)n=5×5=25,利用列舉法求出抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)包含的基本事件有15個,由此能求出抽得的第一張卡片上的數(shù)不大于第二張卡片上的數(shù)的概率.

詳解:從分別寫有1,2,3,4,55張卡片中隨機抽取1張,放回后再隨機抽取1張,

基本事件總數(shù)n=5×5=25,

抽得的第一張卡片上的數(shù)不大于第二張卡片上的數(shù)包含的基本事件有15個,分別為:

(1,2),(2,3),(1,3),(3,4),(2,4),(1,4),(4,5),(3,5),

(2,5),(1,5),(5,6),(4,6),(3,6),(2,6),(1,6),

則抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)的概率為p=

故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某公園摩天輪的半徑為,圓心距地面的高度為,摩天輪做勻速轉(zhuǎn)動,每轉(zhuǎn)一圈,摩天輪上的點的起始位置在最低點處.

(1)已知在時刻距離地面的高度,(其中),求距離地面的高度;

(2)當(dāng)離地面以上時,可以看到公園的全貌,求轉(zhuǎn)一圈中有多少時間可以看到公園的全貌?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在底面是菱形的四棱錐P﹣ABCD中, E、F分別為PD、AB的中點,PAB為等腰直角三角形,PA平面ABCD,PA=1.

(1)求證:直線AE平面PFC;

(2)求證:PB⊥FC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為雙曲線 的右焦點,過坐標(biāo)原點的直線依次與雙曲線的左、右支交于點,若 ,則該雙曲線的離心率為(

A. B. C. D.

【答案】B

【解析】,設(shè)雙曲線的左焦點為,連接,由對稱性可知, 為矩形,且,故選B.

方法點睛】本題主要考查雙曲線的定義及離心率,屬于難題.離心率的求解在圓錐曲線的考查中是一個重點也是難點,一般求離心率有以下幾種情況:①直接求出,從而求出;②構(gòu)造的齊次式,求出;③采用離心率的定義以及圓錐曲線的定義來求解;④根據(jù)圓錐曲線的統(tǒng)一定義求解.

型】單選題
結(jié)束】
12

【題目】到點, 及到直線的距離都相等,如果這樣的點恰好只有一個,那么實數(shù)的值是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)= ,則函數(shù)y=|f(x)|﹣ 的零點個數(shù)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是平行四邊形, ,側(cè)面底面 , 分別為, 的中點,點在線段上.

(1)求證: 平面;

(2)若直線與平面所成的角和直線與平面所成的角相等,求的值.

【答案】(1)證明見解析;(2) .

【解析】試題分析:

在平行四邊形中,由條件可得,進而可得。由側(cè)面底面,得底面,故得,所以可證得平面.(Ⅱ)先證明平面平面,由面面平行的性質(zhì)可得平面.(Ⅲ)建立空間直角坐標(biāo)系,通過求出平面的法向量,根據(jù)線面角的向量公式可得

試題解析:

(Ⅰ)證明:在平行四邊形中,

, ,

分別為 的中點,

,

∵側(cè)面底面,且

底面

底面,

平面, 平面

平面

(Ⅱ)證明:∵的中點, 的中點,

,

平面 平面,

平面

同理平面,

, 平面 平面,

∴平面平面

平面

平面

(Ⅲ)解:由底面, ,可得, , 兩兩垂直,

建立如圖空間直角坐標(biāo)系,

, , ,

所以,

設(shè),則

,

易得平面的法向量,

設(shè)平面的法向量為,則:

,得,

,得

∵直線與平面所成的角和此直線與平面所成的角相等,

,即,

,

解得(舍去),

點睛用向量法確定空間中點的位置的方法

根據(jù)題意建立適當(dāng)?shù)目臻g直角坐標(biāo)系,由條件確定有關(guān)點的坐標(biāo),運用共線向量用參數(shù)(參數(shù)的范圍要事先確定確定出未知點的坐標(biāo),根據(jù)向量的運算得到平面的法向量或直線的方向向量,根據(jù)所給的線面角(或二面角)的大小進行運算,進而求得參數(shù)的值,通過與事先確定的參數(shù)的范圍進行比較,來判斷參數(shù)的值是否符合題意,進而得出點是否存在的結(jié)論。

型】解答
結(jié)束】
21

【題目】如圖,橢圓上的點到左焦點的距離最大值是,已知點在橢圓上,其中為橢圓的離心率.

(1)求橢圓的方程;

(2)過原點且斜率為的直線交橢圓于兩點,其中在第一象限,它在軸上的射影為點,直線交橢圓于另一點.證明:對任意的,點恒在以線段為直徑的圓內(nèi).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列的前項和為,且對任意正整數(shù),滿足

1)求數(shù)列的通項公式.

2)設(shè),求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等差數(shù)列{an}的前n項和為Sn,且=9S6=60

(I)求數(shù)列{an}的通項公式;

II)若數(shù)列{bn}滿足bn+1bn=n∈N+)且b1=3,求數(shù)列的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等比數(shù)列中, ,且.

(1)求數(shù)列的通項公式;

(2)求數(shù)列的前項和.

查看答案和解析>>

同步練習(xí)冊答案