【題目】
(1)求對稱軸是 軸,焦點(diǎn)在直線 上的拋物線的標(biāo)準(zhǔn)方程;
(2)過拋物線 焦點(diǎn) 的直線 它交于 兩點(diǎn),求弦 的中點(diǎn)的軌跡方程.

【答案】
(1)解:對稱軸是 軸則頂點(diǎn)在焦點(diǎn)在

所以 ,則 , ,
.
(2)解:由題知拋物線焦點(diǎn)為 ,
當(dāng)直線的斜率存在時(shí),設(shè)為 ,則焦點(diǎn)弦方程為 ,
代入拋物線方程得所以 ,由題意知斜率不等于0,
方程是一個(gè)一元二次方程,由韋達(dá)定理:
所以中點(diǎn)坐標(biāo):
代入直線方程
中點(diǎn)縱坐標(biāo);
即中點(diǎn)為
消參數(shù) ,得其方程為
當(dāng)直線的斜率不存在時(shí),直線的中點(diǎn)是 ,符合題意,
故答案為: .
【解析】(1)先求出拋物線的焦點(diǎn)坐標(biāo),再求拋物線的方程;
(2)設(shè)出過焦點(diǎn)的直線的方程代入到拋物線方程中,消去y得關(guān)于x的一元二次方程,結(jié)合 韋達(dá)定理,表示出弦中點(diǎn)的坐標(biāo),消去參數(shù)k得中點(diǎn)軌跡方程.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某保險(xiǎn)公司有一款保險(xiǎn)產(chǎn)品的歷史收益率(收益率=利潤÷保費(fèi)收入)的頻率分布直方圖如圖所示:

(Ⅰ)試估計(jì)平均收益率;

(Ⅱ)根據(jù)經(jīng)驗(yàn),若每份保單的保費(fèi)在20元的基礎(chǔ)上每增加元,對應(yīng)的銷量(萬份)與(元)有較強(qiáng)線性相關(guān)關(guān)系,從歷史銷售記錄中抽樣得到如下5組的對應(yīng)數(shù)據(jù):

據(jù)此計(jì)算出的回歸方程為.

(i)求參數(shù)的估計(jì)值;

(ii)若把回歸方程當(dāng)作的線性關(guān)系,用(Ⅰ)中求出的平均收益率估計(jì)此產(chǎn)品的收益率,每份保單的保費(fèi)定為多少元時(shí)此產(chǎn)品可獲得最大收益,并求出該最大收益.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C所對應(yīng)的邊分別為a,b,c,且 .
(1)求角B的大。
(2)若b= ,求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,已知A為鈍角,且2a ,若 ,則△ABC的面積的最大值為 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=f(x),f(0)=-2,且對 ,y R,都有f(x+y)-f(y)=(x+2y+1)x.
(1)求f(x)的表達(dá)式;
(2)已知關(guān)于x的不等式f(x)-ax+a+1 的解集為A,若A[2,3],求實(shí)數(shù)a的取值范圍;
(3)已知數(shù)列{ }中, , ,記 ,且數(shù)列{ 的前n項(xiàng)和為 ,
求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在△ABC中,角A,B,C所對的邊分別是a,b,c,且a、b、c成等比數(shù)列,c= bsinC﹣ccosB.
(Ⅰ)求B的大小;
(Ⅱ)若b=2 ,求△ABC的周長和面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知以點(diǎn)為圓心的圓過點(diǎn),線段的垂直平分線交圓于點(diǎn)、,,

(1)求直線的方程; (2)求圓的方程。

(3)設(shè)點(diǎn)在圓上,試探究使的面積為 8 的點(diǎn)共有幾個(gè)?證明你的結(jié)論

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: + =1(a>b>0)的離心率為 ,點(diǎn)B是橢圓C的上頂點(diǎn),點(diǎn)Q在橢圓C上(異于B點(diǎn)).
(Ⅰ)若橢圓V過點(diǎn)(﹣ ),求橢圓C的方程;
(Ⅱ)若直線l:y=kx+b與橢圓C交于B、P兩點(diǎn),若以PQ為直徑的圓過點(diǎn)B,證明:存在k∈R, =

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是正方形的對角線,弧的圓心是,半徑為,正方形為軸旋轉(zhuǎn),求圖中Ⅰ,Ⅱ,Ⅲ三部分旋轉(zhuǎn)所得旋轉(zhuǎn)體的體積之比.

查看答案和解析>>

同步練習(xí)冊答案