Loading [MathJax]/jax/output/CommonHTML/jax.js
16.已知直線y=kx+1與曲線y=x3+mx+n相切于點P(1,3),則n=( �。�
A.-1B.1C.3D.4

分析 求函數(shù)的導數(shù),根據導數(shù)的幾何意義,建立方程關系即可得到結論.

解答 解:∵y=x3+mx+n,
∴y′=3x2+m,
∵直線y=kx+1與曲線y=x3+mx+n相切于點P(1,3),
∴f′(1)=k=3+m,3=k+1=1+m+n,
解得m=-1,n=3,
故選C.

點評 本題主要考查導數(shù)的幾何意義,根據導數(shù)的切線斜率定義函數(shù)的導數(shù),建立條件關系是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

6.若函數(shù)f(x)=x•ex+f′(1)•x2,則f′(1)=-2e.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.設z1、z2∈C,則“z1+z2是實數(shù)”是“z1與z2共軛”的( �。�
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.設O-ABC是正三棱錐,G1是△ABC的重心,G是OG1上的一點,且OG=3GG1,若,則 OG=xOA+yOB+zOC,則(x,y,z)為( �。�
A.1414,14B.3434,34C.13,1313D.23,23,23

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.如圖所示,已知OA⊥?ABCD所在的平面,P、Q分別是AB,OC的中點,求證:PQ∥平面OAD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.設f(x)=arcsinx,則f″(0)=-12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.命題:若x+y≠5則x≠2或y≠3( �。�
A.真命題B.假命題C.無法判斷真假D.不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.不等式x2-3x+2≤0的解集為( �。�
A.[1,2]B.(-∞,1)∪(2,+∞)C.(1,2)D.(-∞,1]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.△ABC中,角A,B,C所對的邊分別為a,b,c,已知A=60°,b=2,S△ABC=23,則a+b+csinA+sinB+sinC=4.

查看答案和解析>>

同步練習冊答案