7.設(shè)z1、z2∈C,則“z1+z2是實(shí)數(shù)”是“z1與z2共軛”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件

分析 根據(jù)充分必要條件的定義以及共軛復(fù)數(shù)的定義判斷即可.

解答 解:設(shè)z1=a+bi(a,b∈R),z2=c+di(c,d∈R),
則z1+z2=(a+c)+(b+d)i,
∵z1+z2為實(shí)數(shù),
∴d=-b,
z2=c-bi,
∴z1=a+bi,z2=c-bi,
z1、z2不一定是共軛虛數(shù),
反之,若z1、z2是共軛虛數(shù),
則z1+z2是實(shí)數(shù)”成立,
故“z1+z2是實(shí)數(shù)”是“z1與z2共軛”的必要不充分條件,
故選:B.

點(diǎn)評(píng) 本題考查了充分必要條件,考查復(fù)數(shù)的知識(shí),是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.定義在R上的函數(shù)y=f(x)滿足f(x)•f(x+5)=3,f(1)=2,則f(2016)=$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.有下面四個(gè)判斷:①命題“設(shè)a、b∈R,若a+b≠6,則a≠3或b≠3”是一個(gè)假命題;②若“p或q”為真命題,則p、q均為真命題;③在△ABC中,“A>30o”是“sinA>$\frac{1}{2}$”的充分不必要條件;④設(shè)向量$\overrightarrow{a}$=(sin2θ,cosθ),$\overrightarrow$=(cosθ,1),則“$\overrightarrow{a}$∥$\overrightarrow$”是“tanθ=$\frac{1}{2}$”成立的必要不充分條件.其中所有錯(cuò)誤的判斷有①②③.(填序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.曲線f(x)=x3+x-2在點(diǎn)P處的切線平行于直線4x-y-1=0,則點(diǎn)P的坐標(biāo)為(  )
A.(1,0)B.(2,8)C.(1,0)或(-1,-4)D.(2,8)或(-1,-4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow$|=2,$\overrightarrow{a}$與$\overrightarrow$的夾角為30°,求|$\overrightarrow{a}$+$\overrightarrow$|,|$\overrightarrow{a}$-$\overrightarrow$|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知不等式組表示的平面區(qū)域$\left\{\begin{array}{l}x+4y≥4\\ x+y≤4\\ x≥0\end{array}\right.$為D,點(diǎn)集T={(x0,y0)∈D|x0,y0∈Z.(x0,y0)是z=x+y在D上取得最大值或最小值的點(diǎn)}則T中的點(diǎn)的縱坐標(biāo)之和為(  )
A.12B.5C.10D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=2sinωx,其中常數(shù)ω>0.
(Ⅰ)令ω=1,求函數(shù)$F(x)=f(x)+{[f(x+\frac{π}{2})]}^{2}$在$[-\frac{π}{2},0]$上的最大值;
(Ⅱ)若函數(shù)$g(x)=2-f(x)+2\sqrt{3}cosωx$的周期為π,求函數(shù)g(x)的單調(diào)遞增區(qū)間,并直接寫出g(x)在$[\frac{3π}{4},\frac{23π}{4}]$的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知直線y=kx+1與曲線y=x3+mx+n相切于點(diǎn)P(1,3),則n=( 。
A.-1B.1C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.某蛋糕店每天制作生日蛋糕若干個(gè),每個(gè)生日蛋糕的成本為50元,然后以每個(gè)100元的價(jià)格出售,如果當(dāng)天賣不完,剩下的蛋糕作垃圾處理.現(xiàn)需決策此蛋糕店每天應(yīng)該制作幾個(gè)生日蛋糕,為此搜集并整理了100天生日蛋糕的日需求量(單位:個(gè)),得到如圖所示的柱狀圖,以100天記錄的各需求量的頻率作為每天各需求量發(fā)生的概率.

(1)若蛋糕店一天制作17個(gè)生日蛋糕,
①求當(dāng)天的利潤(rùn)y(單位:元)關(guān)于當(dāng)天需求量n(單位:個(gè),n∈N)的函數(shù)解析式;
②在當(dāng)天的利潤(rùn)不低于750元的條件下,求當(dāng)天需求量不低于18個(gè)的概率.
(2)若蛋糕店計(jì)劃一天制作16個(gè)或17個(gè)生日蛋糕,請(qǐng)你以蛋糕店一天利潤(rùn)的期望值為決定依據(jù),判斷應(yīng)該制作16個(gè)是17個(gè)?

查看答案和解析>>

同步練習(xí)冊(cè)答案