分析 取OD中點G,連接AG、QG,利用三角形中位線定理,我們易判斷四邊形APQG是平行四邊形,AG∥PQ,進而結(jié)合線面平行的判定定理,我們易得到PQ∥平面OAD.
解答 證明:取OD中點G,連接AG、QG,
因為EF分別為AB、PC的中點,
所以AP=$\frac{1}{2}$AB,GQ∥DC且GQ=$\frac{1}{2}$DC,
又在平行四邊形ABCD中AB∥CD且AB=CD,
所以AP∥GQ且AP=GQ,
所以四邊形APQG是平行四邊形,
所以AG∥PQ且AG=PQ
又,AG?平面OAD,PQ?平面OAD.
所以PQ∥平面OAD.
點評 本題考查的知識點是直線與平面平行的判定,熟練掌握判定定理內(nèi)容及解題步驟是解答此類問題的關(guān)鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {2} | B. | {3} | C. | {-2,3} | D. | .{-3,2} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com