【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),直線與曲線交于,兩點.

(Ⅰ)求的長;

(Ⅱ)在以為極點,軸的正半軸為極軸建立的極坐標系中,設點的極坐標為,求點到線段中點的距離.

【答案】(1);(2)1。

【解析】分析(Ⅰ)化直線的參數(shù)方程為普通方程,和曲線方程聯(lián)立后利用根與系數(shù)的關系寫出兩個交點的橫坐標的和與積,利用弦長公式求的長;(Ⅱ)由極坐標與直角坐標互化公式得點P的直角坐標為,所以點在直線上,中點對應參數(shù)為,由參數(shù)的幾何意義可得結(jié)果.

詳解(Ⅰ)直線的參數(shù)方程的標準形式為為參數(shù)),代入曲線C的方程得.

設點A,B對應的參數(shù)分別為,則,所以.

(Ⅱ)由極坐標與直角坐標互化公式得點P的直角坐標為,所以點在直線上,中點對應參數(shù)為,由參數(shù)的幾何意義,所以點到線段中點的距離.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某學校參加某項競賽僅有一個名額,結(jié)合平時訓練成績,甲、乙兩名學生進入最后選拔,學校為此設計了如下選拔方案:設計6道測試題,若這6道題中,甲能正確解答其中的4道,乙能正確解答每個題目的概率均為.假設甲、乙兩名學生解答每道測試題都相互獨立,互不影響,現(xiàn)甲、乙從這6道測試題中分別隨機抽取3題進行解答.

(1)求甲、乙兩名學生共答對2道測試題的概率;

(2)從數(shù)學期望和方差的角度分析,應選拔哪個學生代表學校參加競賽?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)的短軸一個端點到右焦點F的距離為2,且過點
(1)求橢圓C的方程;
(2)設M,N為橢圓C上不同的兩點,A,B分別為橢圓C上的左右頂點,直線MN既不平行與坐標軸,也不過橢圓C的右焦點F,若∠AFM=∠BFN,求證:直線MN過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】a,b為空間中兩條互相垂直的直線,等腰直角三角形ABC的直角邊AC所在直線與a,b都垂直,斜邊AB以直線AC為旋轉(zhuǎn)軸旋轉(zhuǎn),有下列結(jié)論:
①當直線AB與a成60°角時,AB與b成30°角;
②當直線AB與a成60°角時,AB與b成60°角;
③直線AB與a所成角的最小值為45°;
④直線AB與a所成角的最小值為60°;
其中正確的是(填寫所有正確結(jié)論的編號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(12分)
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知關于的方程在區(qū)間上有兩個實數(shù)根,且,則實數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在多面體中,平面平面,四邊形為正方形,四邊形為梯形,且

(Ⅰ)求證:平面;

(Ⅱ)求證:平面;

(Ⅲ)在線段上是否存在點,使得平面?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)在,很多人都喜歡騎“共享單車”,但也有很多市民并不認可.為了調(diào)查人們對這種交通方式的認可度,某同學從交通擁堵不嚴重的A城市和交通擁堵嚴重的B城市分別隨機調(diào)查了20名市民,得到了一個市民是否認可的樣本,具體數(shù)據(jù)如下列聯(lián)表

附:,

根據(jù)表中的數(shù)據(jù),下列說法中,正確的是(

A. 沒有95% 以上的把握認為“是否認可與城市的擁堵情況有關”

B. 有99% 以上的把握認為“是否認可與城市的擁堵情況有關”

C. 可以在犯錯誤的概率不超過0.01的前提下認為“是否認可與城市的擁堵情況有關”

D. 可以在犯錯誤的概率不超過0.025的前提下認為“是否認可與城市的擁堵情況有關”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《史記》卷六十五《孫子吳起列傳第五》中有這樣一道題:齊王與田忌賽馬,田忌的上等馬優(yōu)于齊王的中等馬,劣于齊王的上等馬,田忌的中等馬優(yōu)于齊王的下等馬,劣于齊王的中等馬,田忌的下等馬劣于齊王的下等馬,現(xiàn)從雙方的馬匹中隨機選一匹馬進行一場比賽,齊王獲勝的概率是( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案