【題目】函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<)的圖象如圖所示,為了得到g(x)=Acosωx的圖象,只需把y=f(x)的圖象上所有的點(diǎn)( 。
A. 向右平移個(gè)單位長(zhǎng)度 B. 向左平移個(gè)單位長(zhǎng)度
C. 向右平移個(gè)單位長(zhǎng)度 D. 向左平移個(gè)單位長(zhǎng)度
【答案】B
【解析】
由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出ω,由五點(diǎn)法作圖求出φ的值,可得f(x)的解析式,再利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,得出結(jié)論.
根據(jù)函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<)的圖象,可得A=1, ,∴ω=2.
再根據(jù)五點(diǎn)法作圖可得2×+φ=π,求得φ=,∴函數(shù)f(x)=sin(2x+).
故把y=f(x)的圖象上所有的點(diǎn)向左平移個(gè)單位長(zhǎng)度,可得y=sin(2x++)=cos2x=g(x)的圖象.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著我國(guó)經(jīng)濟(jì)的發(fā)展,居民收入逐年增長(zhǎng).某地區(qū)2014年至2018年農(nóng)村居民家庭人均純收入(單位:千元)的數(shù)據(jù)如下表:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代號(hào) | 1 | 2 | 3 | 4 | 5 |
人均純收入 | 5 | 6 | 7 | 8 | 10 |
(1)求關(guān)于的線性回歸方程;
(2)利用(1)中的回歸方程,分析2014年至2018年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測(cè)2020年該地區(qū)農(nóng)村居民家庭人均純收入約為多少千元?
附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系下,已知圓O:,直線l:()與圓O相交于A,B兩點(diǎn),且.
(1)求直線l的方程;
(2)若點(diǎn)E,F分別是圓O與x軸的左、右兩個(gè)交點(diǎn),點(diǎn)D滿足,點(diǎn)M是圓O上任意一點(diǎn),點(diǎn)N在線段上,且存在常數(shù)使得,求點(diǎn)N到直線l距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),若方程f(x)﹣m=0恰有兩個(gè)實(shí)根,則實(shí)數(shù)m的取值范圍是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,五面體A﹣BCC1B1中,AB1=4.底面ABC 是正三角形,AB=2.四邊形BCC1B1是矩形,二面角A﹣BC﹣C1為直二面角.
(1)D在AC上運(yùn)動(dòng),當(dāng)D在何處時(shí),有AB1//平面BDC1,并且說明理由;
(2)當(dāng)AB1//平面BDC1時(shí),求二面角C﹣BC1﹣D余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】用表示自然數(shù)n的所有因數(shù)中最大的那個(gè)奇數(shù),例如:9的因數(shù)有1,3,9,,10的因數(shù)有1,2,5,10,,那么______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在底面是菱形的四棱錐中,,點(diǎn)E在PD上,且.
(1)證明:平面ABCD;
(2)求二面角的大小;
(3)棱PC上是否存在一點(diǎn)F,使平面AEC?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】阿基米德(公元前287年—公元前212年),偉大的古希臘哲學(xué)家、數(shù)學(xué)家和物理學(xué)家,他死后的墓碑上刻著一個(gè)“圓柱容球”的立體幾何圖形,為紀(jì)念他發(fā)現(xiàn)“圓柱內(nèi)切球的體積是圓柱體積的,且球的表面積也是圓柱表面積的”這一完美的結(jié)論.已知某圓柱的軸截面為正方形,其表面積為,則該圓柱的內(nèi)切球體積為( )
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com