求橢圓為參數(shù))的準(zhǔn)線方程
準(zhǔn)線方程

又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823134315825550.gif" style="vertical-align:middle;" />,得+=1,
由此可得a=3,b=,c=2
所以準(zhǔn)線方程
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
設(shè)橢圓其相應(yīng)于焦點(diǎn)的準(zhǔn)線方程為.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知過點(diǎn)傾斜角為的直線交橢圓兩點(diǎn),求證:
;
(Ⅲ)過點(diǎn)作兩條互相垂直的直線分別交橢圓,求 的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)直線與橢圓相交于A、B兩個(gè)不同的點(diǎn),與x軸相交于點(diǎn)C,記O為坐標(biāo)原點(diǎn).
(1)證明:
(2)若的面積取得最大值時(shí)的橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

P為橢圓上一點(diǎn),左、右焦點(diǎn)分別為F1,F(xiàn)2。
(1)若PF1的中點(diǎn)為M,求證
(2)若,求之值。
(3)求 的最值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓左焦點(diǎn)是,右焦點(diǎn)是,右準(zhǔn)線是,上一點(diǎn),與橢圓交于點(diǎn),滿足,則等于(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

直角三角形的直角頂點(diǎn)為動(dòng)點(diǎn),為兩個(gè)定點(diǎn),作,動(dòng)點(diǎn)滿足,當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),設(shè)點(diǎn)的軌跡為曲線,曲線軸正半軸的交點(diǎn)為
(Ⅰ) 求曲線的方程;
(Ⅱ) 是否存在方向向量為m的直線,與曲線交于兩點(diǎn),且 與的夾角為?若存在,求出所有滿足條件的直線方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知直線與橢圓相交于A、B兩點(diǎn),且線段AB的中點(diǎn),在直線上.(1)求此橢圓的離心率;(2)若橢圓的右焦點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)的在圓上,求此橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題





查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在等腰梯形ABCD中,AB//CD,且AB=2AD,設(shè),以A,B為焦點(diǎn)且過點(diǎn)D的雙曲線的離心率為,以C,D為焦點(diǎn)且過點(diǎn)A的橢圓的離心率為,則                              (   )
                 
A.隨著角度的增大,增大,為定值
B.隨著角度的增大,減小,為定值
C.隨著角度的增大,增大,也增大
C.隨著角度的增大,減小,也減小

查看答案和解析>>

同步練習(xí)冊(cè)答案