【題目】已知拋物線(xiàn)的內(nèi)接等邊三角形的面積為(其中為坐標(biāo)原點(diǎn)).
(1)試求拋物線(xiàn)的方程;
(2)已知點(diǎn)兩點(diǎn)在拋物線(xiàn)上,是以點(diǎn)為直角頂點(diǎn)的直角三角形.
①求證:直線(xiàn)恒過(guò)定點(diǎn);
②過(guò)點(diǎn)作直線(xiàn)的垂線(xiàn)交于點(diǎn),試求點(diǎn)的軌跡方程,并說(shuō)明其軌跡是何種曲線(xiàn).
【答案】(1);(2)①證明見(jiàn)解析;②,是以為直徑的圓(除去點(diǎn).
【解析】
(1)設(shè)A(xA,yA),B(xB,yB),由|OA|=|OB|,可得2pxA2pxB,化簡(jiǎn)可得:點(diǎn)A,B關(guān)于x軸對(duì)稱(chēng).因此AB⊥x軸,且∠AOx=30°.可得yA=2p,再利用等邊三角形的面積計(jì)算公式即可得出;
(2)①由題意可設(shè)直線(xiàn)PQ的方程為:x=my+a,P(x1,y1),Q(x2,y2).與拋物線(xiàn)方程聯(lián)立化為:y2﹣my﹣a=0,利用∠PMQ=90°,可得0利用根與系數(shù)的關(guān)系可得m,或(m),進(jìn)而得出結(jié)論;
②設(shè)N(x,y),根據(jù)MN⊥NH,可得0,即可得出.
(1)解依題意,設(shè),,
則由,得,
即,
因?yàn)?/span>,,所以,
故,,
則,關(guān)于軸對(duì)稱(chēng),
所以軸,且,
所以.
因?yàn)?/span>,所以,
所以,
故,,
故拋物線(xiàn)的方程為.
(2)①證明 由題意可設(shè)直線(xiàn)的方程為,
,,
由,消去,得,
故,,.
因?yàn)?/span>,所以.
即.
整理得,
,
即,
得,
所以或.
當(dāng),即時(shí),
直線(xiàn)的方程為,
過(guò)定點(diǎn),不合題意舍去.
故直線(xiàn)恒過(guò)定點(diǎn).
②解 設(shè),則,即,
得,
即,
即軌跡是以為直徑的圓(除去點(diǎn)).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有一張半徑為的圓形鐵皮,從中裁剪出一塊扇形鐵皮(如圖陰影部分),并卷成一個(gè)深度為的圓錐筒,如圖.
(1)若所裁剪的扇形鐵皮的圓心角為,求圓錐筒的容積;
(2)當(dāng)為多少時(shí),圓錐筒的容積最大?并求出容積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班主任對(duì)全班50名學(xué)生學(xué)習(xí)積極性和對(duì)待工作的態(tài)度進(jìn)行了調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下所示:
積極參加班級(jí)工作 | 不太主動(dòng)參加班級(jí)工作 | 合計(jì) | |
學(xué)習(xí)積極性高 | 18 | 7 | 25 |
學(xué)習(xí)積極性一般 | 6 | 19 | 25 |
合計(jì) | 24 | 26 | 50 |
(1)如果隨機(jī)抽查這個(gè)班的一名學(xué)生,那么抽到積極參加班級(jí)工作的學(xué)生的概率是多少?抽到不太主動(dòng)參加班級(jí)工作且學(xué)習(xí)積極性一般的學(xué)生的概率是多少?
(2)試運(yùn)用獨(dú)立性檢驗(yàn)的思想方法有多大把握認(rèn)為學(xué)生的學(xué)習(xí)積極性與對(duì)班級(jí)工作的態(tài)度有關(guān)系?并說(shuō)明理由.
本題參考數(shù)據(jù):
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.84 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為調(diào)研高中生的作文水平.在某市普通高中的某次聯(lián)考中,參考的文科生與理科生人數(shù)之比為,且成績(jī)分布在的范圍內(nèi),規(guī)定分?jǐn)?shù)在50以上(含50)的作文被評(píng)為“優(yōu)秀作文”,按文理科用分層抽樣的方法抽取400人的成績(jī)作為樣本,得到成績(jī)的頻率分布直方圖,如圖所示.其中構(gòu)成以2為公比的等比數(shù)列.
(1)求的值;
(2)填寫(xiě)下面列聯(lián)表,能否在犯錯(cuò)誤的概率不超過(guò)0.01的情況下認(rèn)為“獲得優(yōu)秀作文”與“學(xué)生的文理科”有關(guān)?
文科生 | 理科生 | 合計(jì) | |
獲獎(jiǎng) | 6 | ||
不獲獎(jiǎng) | |||
合計(jì) | 400 |
(3)將上述調(diào)查所得的頻率視為概率,現(xiàn)從全市參考學(xué)生中,任意抽取2名學(xué)生,記“獲得優(yōu)秀作文”的學(xué)生人數(shù)為,求的分布列及數(shù)學(xué)期望.
附:,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某校高三年級(jí)中隨機(jī)抽取100名學(xué)生,對(duì)其高校招生體檢表中的視圖情況進(jìn)行統(tǒng)計(jì),得到如圖所示的頻率分布直方圖,已知從這100人中隨機(jī)抽取1人,其視力在的概率為.
(1)求的值;
(2)若某大學(xué)專(zhuān)業(yè)的報(bào)考要求之一是視力在0.9以上,則對(duì)這100人中能報(bào)考專(zhuān)業(yè)的學(xué)生采用按視力分層抽樣的方法抽取8人,調(diào)查他們對(duì)專(zhuān)業(yè)的了解程度,現(xiàn)從這8人中隨機(jī)抽取3人進(jìn)行是否有意向報(bào)考該大學(xué)專(zhuān)業(yè)的調(diào)查,記抽到的學(xué)生中視力在的人數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四個(gè)命題,其中正確的是( )
A.對(duì)分類(lèi)變量與的隨機(jī)變量的觀測(cè)值來(lái)說(shuō),越小,“與有關(guān)系”可信程度越大
B.殘差點(diǎn)比較均勻地落在水平帶狀區(qū)域內(nèi),帶狀區(qū)域越窄,則模型擬合精度越高
C.相關(guān)指數(shù)越小,則殘差平方和越大,模型的擬合效果越好
D.兩個(gè)隨機(jī)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值越接近
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在其定義域內(nèi)單調(diào)遞增,求實(shí)數(shù)的最大值;
(2)若存在正實(shí)數(shù)對(duì),使得當(dāng)時(shí),能成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com