【題目】已知拋物線(xiàn)的內(nèi)接等邊三角形的面積為(其中為坐標(biāo)原點(diǎn)).

(1)試求拋物線(xiàn)的方程;

(2)已知點(diǎn)兩點(diǎn)在拋物線(xiàn)上,是以點(diǎn)為直角頂點(diǎn)的直角三角形.

①求證:直線(xiàn)恒過(guò)定點(diǎn);

②過(guò)點(diǎn)作直線(xiàn)的垂線(xiàn)交于點(diǎn),試求點(diǎn)的軌跡方程,并說(shuō)明其軌跡是何種曲線(xiàn).

【答案】(1);(2)①證明見(jiàn)解析;②,是以為直徑的圓(除去點(diǎn).

【解析】

1)設(shè)AxA,yA),BxByB),由|OA|=|OB|,可得2pxA2pxB,化簡(jiǎn)可得:點(diǎn)AB關(guān)于x軸對(duì)稱(chēng).因此ABx軸,且∠AOx=30°.可得yA=2p,再利用等邊三角形的面積計(jì)算公式即可得出;

2)①由題意可設(shè)直線(xiàn)PQ的方程為:xmy+aPx1,y1),Qx2y2).與拋物線(xiàn)方程聯(lián)立化為:y2mya=0,利用∠PMQ=90°,可得0利用根與系數(shù)的關(guān)系可得m,或m),進(jìn)而得出結(jié)論;

設(shè)Nxy),根據(jù)MNNH,可得0,即可得出.

(1)解依題意,設(shè),,

則由,得

,

因?yàn)?/span>,所以,

,

,關(guān)于軸對(duì)稱(chēng),

所以軸,且,

所以.

因?yàn)?/span>,所以,

所以

,,

故拋物線(xiàn)的方程為.

(2)①證明 由題意可設(shè)直線(xiàn)的方程為,

,,

,消去,得,

,.

因?yàn)?/span>,所以.

.

整理得,

,

,

,

所以.

當(dāng),即時(shí),

直線(xiàn)的方程為

過(guò)定點(diǎn),不合題意舍去.

故直線(xiàn)恒過(guò)定點(diǎn).

②解 設(shè),則,即,

,

,

即軌跡是以為直徑的圓(除去點(diǎn)).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有一張半徑為的圓形鐵皮,從中裁剪出一塊扇形鐵皮(如圖陰影部分),并卷成一個(gè)深度為的圓錐筒,如圖.

1)若所裁剪的扇形鐵皮的圓心角為,求圓錐筒的容積;

2)當(dāng)為多少時(shí),圓錐筒的容積最大?并求出容積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班主任對(duì)全班50名學(xué)生學(xué)習(xí)積極性和對(duì)待工作的態(tài)度進(jìn)行了調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下所示:

積極參加班級(jí)工作

不太主動(dòng)參加班級(jí)工作

合計(jì)

學(xué)習(xí)積極性高

18

7

25

學(xué)習(xí)積極性一般

6

19

25

合計(jì)

24

26

50

1)如果隨機(jī)抽查這個(gè)班的一名學(xué)生,那么抽到積極參加班級(jí)工作的學(xué)生的概率是多少?抽到不太主動(dòng)參加班級(jí)工作且學(xué)習(xí)積極性一般的學(xué)生的概率是多少?

2)試運(yùn)用獨(dú)立性檢驗(yàn)的思想方法有多大把握認(rèn)為學(xué)生的學(xué)習(xí)積極性與對(duì)班級(jí)工作的態(tài)度有關(guān)系?并說(shuō)明理由.

本題參考數(shù)據(jù):

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.84

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為調(diào)研高中生的作文水平.在某市普通高中的某次聯(lián)考中,參考的文科生與理科生人數(shù)之比為,且成績(jī)分布在的范圍內(nèi),規(guī)定分?jǐn)?shù)在50以上(含50)的作文被評(píng)為“優(yōu)秀作文”,按文理科用分層抽樣的方法抽取400人的成績(jī)作為樣本,得到成績(jī)的頻率分布直方圖,如圖所示.其中構(gòu)成以2為公比的等比數(shù)列.

1)求的值;

2)填寫(xiě)下面列聯(lián)表,能否在犯錯(cuò)誤的概率不超過(guò)0.01的情況下認(rèn)為“獲得優(yōu)秀作文”與“學(xué)生的文理科”有關(guān)?

文科生

理科生

合計(jì)

獲獎(jiǎng)

6

不獲獎(jiǎng)

合計(jì)

400

3)將上述調(diào)查所得的頻率視為概率,現(xiàn)從全市參考學(xué)生中,任意抽取2名學(xué)生,記“獲得優(yōu)秀作文”的學(xué)生人數(shù)為,求的分布列及數(shù)學(xué)期望.

附:,其中.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,棱錐的地面是矩形, 平面,,.

(1)求證: 平面;

(2)求二面角的大小;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某校高三年級(jí)中隨機(jī)抽取100名學(xué)生,對(duì)其高校招生體檢表中的視圖情況進(jìn)行統(tǒng)計(jì),得到如圖所示的頻率分布直方圖,已知從這100人中隨機(jī)抽取1人,其視力在的概率為.

(1)求的值;

(2)若某大學(xué)專(zhuān)業(yè)的報(bào)考要求之一是視力在0.9以上,則對(duì)這100人中能報(bào)考專(zhuān)業(yè)的學(xué)生采用按視力分層抽樣的方法抽取8人,調(diào)查他們對(duì)專(zhuān)業(yè)的了解程度,現(xiàn)從這8人中隨機(jī)抽取3人進(jìn)行是否有意向報(bào)考該大學(xué)專(zhuān)業(yè)的調(diào)查,記抽到的學(xué)生中視力在的人數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四個(gè)命題,其中正確的是(

A.對(duì)分類(lèi)變量的隨機(jī)變量的觀測(cè)值來(lái)說(shuō),越小,有關(guān)系可信程度越大

B.殘差點(diǎn)比較均勻地落在水平帶狀區(qū)域內(nèi),帶狀區(qū)域越窄,則模型擬合精度越高

C.相關(guān)指數(shù)越小,則殘差平方和越大,模型的擬合效果越好

D.兩個(gè)隨機(jī)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值越接近

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若函數(shù)在其定義域內(nèi)單調(diào)遞增,求實(shí)數(shù)的最大值;

2)若存在正實(shí)數(shù)對(duì),使得當(dāng)時(shí),能成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案