【題目】如圖所示,是某海灣旅游區(qū)的一角,其中,為了營造更加優(yōu)美的旅游環(huán)境,旅游區(qū)管委會決定在直線海岸上分別修建觀光長廊AC,其中是寬長廊,造價(jià)是元/米,是窄長廊,造價(jià)是元/米,兩段長廊的總造價(jià)為120萬元,同時(shí)在線段上靠近點(diǎn)的三等分點(diǎn)處建一個(gè)觀光平臺,并建水上直線通道(平臺大小忽略不計(jì)),水上通道的造價(jià)是元/米.

(1) 若規(guī)劃在三角形區(qū)域內(nèi)開發(fā)水上游樂項(xiàng)目,要求的面積最大,那么的長度分別為多少米?

(2) 在(1)的條件下,建直線通道還需要多少錢?

【答案】(1)AC的長度分別為750米和1500米(2)萬元

【解析】

試題(1)設(shè)長為米,長為米,依題意得,即,表示面積,利用基本不等式可得結(jié)論;(2)利用向量方法,將表示為,根據(jù)向量的數(shù)量積與模長的關(guān)系可得結(jié)果.

試題解析:(1)設(shè)長為米,長為米,依題意得,

,

=

當(dāng)且僅當(dāng),即時(shí)等號成立,

所以當(dāng)的面積最大時(shí),AC的長度分別為750米和1500米

(2)在(1)的條件下,因?yàn)?/span>

所以,建水上通道還需要萬元.

解法二:在中,

中,

中,

=

所以,建水上通道還需要萬元.

解法三:以A為原點(diǎn),以AB軸建立平面直角坐標(biāo)系,則,

,即,設(shè)

,求得, 所以

所以,

所以,建水上通道還需要萬元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動圓過定點(diǎn)且與軸相切,點(diǎn)關(guān)于圓心的對稱點(diǎn)為,點(diǎn)的軌跡為.

1)求曲線的方程;

2)一條直線經(jīng)過點(diǎn),且交曲線兩點(diǎn),點(diǎn)為直線上的動點(diǎn).

①求證:不可能是鈍角;

②是否存在這樣的點(diǎn),使得是正三角形?若存在,求點(diǎn)的坐標(biāo):否則,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的兩個(gè)焦點(diǎn)為點(diǎn)在雙曲線C.

1)求雙曲線C的方程;

2)已知Q(0,2),P為雙曲線C上的動點(diǎn),點(diǎn)M滿足求動點(diǎn)M的軌跡方程;

3)過點(diǎn)Q(0,2)的直線與雙曲線C相交于不同的兩點(diǎn)EF,若求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于由有限個(gè)自然數(shù)組成的集合A,定義集合S(A)={a+b|a∈A,b∈A},記集合S(A)的元素個(gè)數(shù)為d(S(A)).定義變換T,變換T將集合A變換為集合T(A)=A∪S(A).

(1)若A={0,1,2},求S(A),T(A);

(2)若集合A有n個(gè)元素,證明:“d(S(A))=2n-1”的充要條件是“集合A中的所有元素能組成公差不為0的等差數(shù)列”;

(3)若A{1,2,3,4,5,6,7,8}且{1,2,3,…,25,26}T(T(A)),求元素個(gè)數(shù)最少的集合A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線過點(diǎn),是拋物線上異于點(diǎn)的不同兩點(diǎn),且以線段為直徑的圓恒過點(diǎn).

(I)當(dāng)點(diǎn)與坐標(biāo)原點(diǎn)重合時(shí),求直線的方程;

(II)求證:直線恒過定點(diǎn),并求出這個(gè)定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)為的坐標(biāo)滿足圓方程,且圓心滿足.

(1)求橢圓的方程;

(2)過點(diǎn)的直線交橢圓兩點(diǎn),過垂直的直線交圓兩點(diǎn),為線段中點(diǎn),若的面積 ,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某三棱錐的三視圖如圖所示,則該三棱錐最長的棱的棱長為( )

A. 3 B. C. D. 2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓長軸是短軸的倍,且右焦點(diǎn)為.

(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;

(Ⅱ)直線交橢圓兩點(diǎn),若線段中點(diǎn)的橫坐標(biāo)為,求直線的方程及的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義:由橢圓的兩個(gè)焦點(diǎn)和短軸的一個(gè)頂點(diǎn)組成的三角形稱為該橢圓的特征三角形;如果兩個(gè)橢圓的特征三角形是相似的,則稱這兩個(gè)橢圓是相似橢圓,并將三角形的相似比稱為橢圓的相似比,已知橢圓.

1)若橢圓,判斷相似?如果相似,求出的相似比;如果不相似,請說明理由;

2)寫出與橢圓相似且焦點(diǎn)在軸上,短半軸長為的橢圓的標(biāo)準(zhǔn)方程;若在橢圓上存在兩點(diǎn)關(guān)于直線對稱,求實(shí)數(shù)的取值范圍;

3)如圖:直線與兩個(gè)相似橢圓分別交于點(diǎn)和點(diǎn),試在橢圓和橢圓上分別作出點(diǎn)和點(diǎn)(非橢圓頂點(diǎn)),使組成以為相似比的兩個(gè)相似三角形,寫出具體作法.(不必證明)

查看答案和解析>>

同步練習(xí)冊答案