精英家教網 > 高中數學 > 題目詳情

甲廠以x千克/小時的速度勻速生產某種產品(生產條件要求1≤x≤10),每一小時可獲得的利潤是100(5x+1﹣)元.
(1)求證:生產a千克該產品所獲得的利潤為100a(5+)元;
(2)要使生產900千克該產品獲得的利潤最大,問:甲廠應該選取何種生產速度?并求此最大利潤.

(1)見解析(2)甲廠應以6千克/小時的速度生產,可獲得最大利潤457500元

解析試題分析:1)生產a千克該產品所用的時間是小時,
∵每一小時可獲得的利潤是100(5x+1﹣)元,∴獲得的利潤為100(5x+1﹣)×元.
因此生產a千克該產品所獲得的利潤為100a(5+)元.
(2)生產900千克該產品獲得的利潤為90000(5+),1≤x≤10.
設f(x)=,1≤x≤10.
則f(x)=,當且僅當x=6取得最大值.
故獲得最大利潤為=457500元.
考點:函數模型的選擇與應用;二次函數在閉區(qū)間上的最值
點評:正確理解題意和熟練掌握二次函數的單調性是解題的關鍵

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

某商場銷售某種商品的經驗表明,該商品每日的銷售量(單位:千克)與銷售價格(單位:元/千克)滿足關系式,其中,為常數.已知銷售價格為5元/千克時,每日可售出該商品11千克.
(Ⅰ)求的值;
(Ⅱ)若該商品的成本為3元/千克,試確定銷售價格的值,使商場每日銷售該商品所獲得的利潤最大.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(Ⅰ)已知函數,若存在,使得,則稱是函數的一個不動點,設二次函數.
(Ⅰ) 當時,求函數的不動點;
(Ⅱ) 若對于任意實數,函數恒有兩個不同的不動點,求實數的取值范圍;
(Ⅲ) 在(Ⅱ)的條件下,若函數的圖象上兩點的橫坐標是函數的不動點,且直線是線段的垂直平分線,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某單位設計的兩種密封玻璃窗如圖所示:圖1是單層玻璃,厚度為8 mm;圖2是雙層中空玻璃,厚度均為4 mm,中間留有厚度為的空氣隔層.根據熱傳導知識,對于厚度為的均勻介質,兩側的溫度差為,單位時間內,在單位面積上通過的熱量,其中為熱傳導系數.假定單位時間內,在單位面積上通過每一層玻璃及空氣隔層的熱量相等.(注:玻璃的熱傳導系數為,空氣的熱傳導系數為.)

(1)設室內,室外溫度均分別為,內層玻璃外側溫度為,外層玻璃內側溫度為,且.試分別求出單層玻璃和雙層中空玻璃單位時間內,在單位面積上通過的熱量(結果用,表示);
(2)為使雙層中空玻璃單位時間內,在單位面積上通過的熱量只有單層玻璃的4%,應如何設計的大?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知二次函數的導函數的圖像與直線平行,且處取得極小值.設
(1)若曲線上的點到點的距離的最小值為,求的值;
(2)如何取值時,函數存在零點,并求出零點.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(1)計算:;(2)解方程:log3(6x-9)=3.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數.
(1) 試問函數f(x)能否在x= 時取得極值?說明理由;
(2) 若a= ,當x∈[,4]時,函數f(x)與g(x)的圖像有兩個公共點,求c的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

為了在夏季降溫和冬季供暖時減少能源損耗,房屋的房頂和外墻需要建造隔熱層,某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元,該建筑物每年的能源消耗費用為C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關系:C(x)=(0x10),若不建隔熱層,每年能源消耗費用為8萬元。設f(x)為隔熱層建造費用與20年的能源消耗費用之和。
(1)求k的值及f(x)的表達式;
(2)隔熱層修建多厚時,總費用f(x)達到最小,并求最小值。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某工廠生產一種產品的原材料費為每件40元,若用x表示該廠生產這種產品的總件數,則電力與機器保養(yǎng)等費用為每件0.05x元,又該廠職工工資固定支出12500元。
(1)把每件產品的成本費P(x)(元)表示成產品件數x的函數,并求每件產品的最低成本費;
(2)如果該廠生產的這種產品的數量x不超過3000件,且產品能全部銷售,根據市場調查:每件產品的銷售價Q(x)與產品件數x有如下關系:,試問生產多少件產品,總利潤最高?(總利潤=總銷售額-總的成本)

查看答案和解析>>

同步練習冊答案