已知橢圓的右焦點為 ,為橢圓的上頂點,為坐標原點,且兩焦點和短軸的兩端構(gòu)成邊長為的正方形.
(1)求橢圓的標準方程;
(2)是否存在直線交與橢圓于, ,且使,使得的垂心,若存在,求出點的坐標,若不存在,請說明理由.
(1) ;(2).

試題分析:(1)利用正方形的性質(zhì),橢圓的性質(zhì);(2)由直線的方程于橢圓的方程組成方程組,消去,由綜合求得.
試題解析:(1)由兩焦點與短軸的兩端點構(gòu)成邊長為的正方形,則,,
所以橢圓方程為.            (4分)
(2)假設存在直線交橢圓于兩點,且使的垂心,設,
,則,故直線的斜率,∴設直線的方程為,
,由題意知,即,      (7分)
,,由題意應有
,,
,                    (9分)
,
解得,經(jīng)檢驗,當時,不存在,故舍去
∴當時,所求直線方程為滿足題意,
綜上所述,存在直線,且直線的方程為,             (14分)
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓,
(1)若橢圓的長軸長為4,離心率為,求橢圓的標準方程;
(2)在(1)的條件下,設過定點的直線與橢圓交于不同的兩點,且為銳角(為坐標原點),求直線的斜率的取值范圍;
(3)過原點任意作兩條互相垂直的直線與橢圓相交于四點,設原點到四邊形的一邊距離為,試求滿足的條件.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

橢圓的左、右焦點分別為,且橢圓過點.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點作不與軸垂直的直線交該橢圓于兩點,為橢圓的左頂點,試判斷的大小是否為定值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的離心率為,,為橢圓的兩個焦點,點在橢圓上,且的周長為。
(Ⅰ)求橢圓的方程
(Ⅱ)設直線與橢圓相交于兩點,若為坐標原點),求證:直線與圓相切.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的離心率為,直線:與以原點為圓心、以橢圓的短半軸長為半徑的圓相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)設橢圓的左焦點為,右焦點,直線過點且垂直于橢圓的長軸,動直線垂直于點,
線段垂直平分線交于點,求點的軌跡的方程;
(Ⅲ)設軸交于點,不同的兩點上,且滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知定圓的圓心為,動圓過點,且和圓相切,動圓的圓心的軌跡記為
(Ⅰ)求曲線的方程;
(Ⅱ)若點為曲線上一點,試探究直線:與曲線是否存在交點? 若存在,求出交點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的左、右焦點分別為F1、F2,P是橢圓上的一點,,且,垂足為,若四邊形為平行四邊形,則橢圓的離心率的取值范圍是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的右焦點在圓上,直線交橢圓于兩點.
(1)求橢圓的方程;
(2)若(為坐標原點),求的值;
(3)設點關(guān)于軸的對稱點為不重合),且直線軸交于點,試問的面積是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

F1、F2是定點,|F1F2|=6,動點M滿足|MF1|+|MF2|=8,則點M的軌跡是( )
A.線段B.直線C.橢圓D.圓

查看答案和解析>>

同步練習冊答案