設(shè)函數(shù)。
(1)求函數(shù)的最小值;
(2)設(shè),討論函數(shù)的單調(diào)性;
(3)斜率為的直線與曲線交于,兩點(diǎn),求證:。
(1).(2)當(dāng)a≥0時(shí),F(xiàn)(x)在(0,+∞)上是增函數(shù);
當(dāng)a<0時(shí),F(xiàn)(x)在上單調(diào)遞增,在上單調(diào)遞減.(3)構(gòu)造函數(shù)利用函數(shù)的單調(diào)性證明不等式
解析試題分析:(1)f'(x)=lnx+1(x>0),令f'(x)=0,得.
∵當(dāng)時(shí),f'(x)<0;當(dāng)時(shí),
f'(x)>0,
∴當(dāng)時(shí),. 4分
(2)F(x)=ax2+lnx+1(x>0),.
①當(dāng)a≥0時(shí),恒有F'(x)>0,F(xiàn)(x)在(0,+∞)上是增函數(shù);
②當(dāng)a<0時(shí),
令F'(x)>0,得2ax2+1>0,解得;
令F'(x)<0,得2ax2+1<0,解得.
綜上,當(dāng)a≥0時(shí),F(xiàn)(x)在(0,+∞)上是增函數(shù);
當(dāng)a<0時(shí),F(xiàn)(x)在上單調(diào)遞增,在上單調(diào)遞減. 8分
(3).
要證,即證,等價(jià)于證,令,
則只要證,由t>1知lnt>0,
故等價(jià)于證lnt<t﹣1<tlnt(t>1)(*).
①設(shè)g(t)=t﹣1﹣lnt(t≥1),則,
故g(t)在[1,+∞)上是增函數(shù),
∴當(dāng)t>1時(shí),g(t)=t﹣1﹣lnt>g(1)=0,即t﹣1>lnt(t>1).
②設(shè)h(t)=tlnt﹣(t﹣1)(t≥1),則h'(t)=lnt≥0(t≥1),故h(t)在[1,+∞)上是增函數(shù),
∴當(dāng)t>1時(shí),h(t)=tlnt﹣(t﹣1)>h(1)=0,即t﹣1<tlnt(t>1).
由①②知(*)成立,得證. 12分
考點(diǎn):本題考查了導(dǎo)數(shù)的運(yùn)用
點(diǎn)評(píng):導(dǎo)數(shù)本身是個(gè)解決問(wèn)題的工具,是高考必考內(nèi)容之一,高考往往結(jié)合函數(shù)甚至是實(shí)際問(wèn)題考查導(dǎo)數(shù)的應(yīng)用,求單調(diào)、最值、完成證明等,請(qǐng)注意歸納常規(guī)方法和常見(jiàn)注意點(diǎn)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)若存在函數(shù)使得恒成立,則稱是的一個(gè)“下界函數(shù)”.
(I) 如果函數(shù)為實(shí)數(shù)為的一個(gè)“下界函數(shù)”,求的取值范圍;
(Ⅱ)設(shè)函數(shù) 試問(wèn)函數(shù)是否存在零點(diǎn),若存在,求出零點(diǎn)個(gè)數(shù);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)(,b∈Z),曲線在點(diǎn)(2,)處的切線方程為=3.
(1)求的解析式;
(2)證明:曲線=上任一點(diǎn)的切線與直線和直線所圍三角形的面積為定值,并求出此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù);
(1)若在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,求實(shí)數(shù)的值;
(2)當(dāng)時(shí),求證:當(dāng)時(shí),.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)的導(dǎo)函數(shù)是,在處取得極值,且
,
(Ⅰ)求的極大值和極小值;
(Ⅱ)記在閉區(qū)間上的最大值為,若對(duì)任意的總有
成立,求的取值范圍;
(Ⅲ)設(shè)是曲線上的任意一點(diǎn).當(dāng)時(shí),求直線OM斜率的最
小值,據(jù)此判斷與的大小關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),其中。
(1)若函數(shù)有極值,求的值;
(2)若函數(shù)在區(qū)間上為增函數(shù),求的取值范圍;
(3)證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ) 若存在實(shí)數(shù),使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com