已知在區(qū)間上最大值是5,最小值是-11,求的解析式.
解析試題分析:解 ∵, ∴
令,得, 0 + 0 - ↗ 極大 ↘
若,
因此必為最大值,∴,得,
∵,∴
∴,∴
∴
若,同理可得為最小值, ∴,得,
∵,,∴∴,∴
∴
考點(diǎn):導(dǎo)數(shù)的運(yùn)用
點(diǎn)評(píng):利用導(dǎo)數(shù)的符號(hào)判定函數(shù)的單調(diào)性,以及求解函數(shù)的最值屬于基礎(chǔ)題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)。
(1)求函數(shù)的最小值;
(2)設(shè),討論函數(shù)的單調(diào)性;
(3)斜率為的直線(xiàn)與曲線(xiàn)交于,兩點(diǎn),求證:。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(1)若函數(shù)在上為增函數(shù),求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),求在上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(1)設(shè)函數(shù),.求函數(shù)的單調(diào)遞減區(qū)間;
(2)證明函數(shù)在上是增函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知的圖像在點(diǎn)處的切線(xiàn)與直線(xiàn)平行.
(1)求a,b滿(mǎn)足的關(guān)系式;
(2)若上恒成立,求a的取值范圍;
(3)證明:()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),若存在使得恒成立,則稱(chēng) 是的
一個(gè)“下界函數(shù)” .
(I)如果函數(shù)(t為實(shí)數(shù))為的一個(gè)“下界函數(shù)”,
求t的取值范圍;
(II)設(shè)函數(shù),試問(wèn)函數(shù)是否存在零點(diǎn),若存在,求出零點(diǎn)個(gè)數(shù);
若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;
(2)設(shè),如果過(guò)點(diǎn)可作曲線(xiàn)的三條切線(xiàn),證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;
(2)設(shè),如果過(guò)點(diǎn)可作曲線(xiàn)的三條切線(xiàn),證明:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com